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Abstract

In this lecture, we show how formal contexts can be enriched with additional
relations so as to make a (sound and complete) Kripke-style semantics of a basic
normal modal logic of categories and concepts.

1 Basic normal modal logic of categories

Following the general methodology discussed in the previous lecture for interpreting
the basic logic of categories on polarities, we are going to introduce a basic normal
lattice-based modal logic, and interpret it on polarity-based (i.e. formal-context-based)
relational structures.

Let Prop be a (countable or finite) set of atomic propositions. The language .Z of
the basic normal modal logic of formal concepts is defined as follows:

o:=L1L[T[plorne|oVve|oe]|op

The basic, or minimal normal modal £-logic is a set L of sequents ¢ - y (which
intuitively read “¢ is a subconcept of y”) with @,y € .Z, containing the following
axioms:

» Sequents for propositional connectives:

rEp, L+p, pHT,
pPEpVag, q-pVag, PAGE p, PAgFq,

¢ Sequents for modal operators:

THOT OpAOgko(pAg)
oLk L OpVogko(pVa)



and closed under the following inference rules:

o-x xtw oty xFo xFy ol x yhy
oky o(x/p)Fw(x/p) ANy oVyky
oy oty

ooy COEOY
Intuitively, the modal fragment of L can be use e.g. to incorporate the viewpoints of
individual agents into the syllogistic reasoning supported by the propositional fragment
of L. By an .Z-logic we understand any extension of L with .Z-axioms ¢ - y.

2 Polarity-based frames and their complex algebras

In order to endow the basic normal modal logic L. defined above with relational se-
mantics, in this section, we introduce relational structures F = (P, Ry, Rs ), such that
P = (A,X,I) is a formal context, and Ry and R, are suitable relations that respectively
induce a normal box-type (i.e. completely meet-preserving) operation and a normal
diamond-type (i.e. completely join-preserving) operation on the concept lattice P*. In
order to guarantee that these operations are well defined on P™, we need to require
some properties of Ry and R, which we capture by the notion of I-compatibility, and
for this, we will need some notation and facts which we collect in the next two sections.

2.1 Notation and basic properties

In what follows, we fix two sets A and X, and use a,b (resp. x,y) for elements of A
(resp. X), and B,C,A; (resp. Y,W,X;) for subsets of A (resp. of X) throughout this
section. For any relation S C U x W, let

SOW) = {w|Vuwe U = usw)}  SOW]:={u|vw(we W = uSw)}.
Well known properties of this construction (cf. [1, Sections 7.22-7.29]) are stated
in the following lemma.
Lemmal.  I. BCC implies SV[C] CSM[B], andY CW implies SO [W] C SO[y].
2. BC SOSWB] andy < SO[SO[y]].
3. SW[B] = sW[SO[sM[B]]] and SO[y] = SOV [sO[y]]].
4. SO = Nyey SONY] and SVUB) = Npes S [B).

Exercise 1. Prove the statements of Lemma 1. Hint: for the first three items, use
Exercise 4 and Example/Exercise 4 of Lecture 2.

As we have done e.g. in Example/Exercise 4 of Lecture 2, for any formal context
P = (A,X,1), we sometimes use B! for I()[B], and Y* for 1(9)[Y], and say that B (resp.
Y) is Galois-stable if B= B (resp. Y = Y*1). When B = {a} (resp. Y = {x}) we write
a™ for {a}™ (resp. x*T for {x}*1). The following lemma collects more well known
facts (cf. [1, Sections 7.22-7.29]:



Lemma 2. 1. BY and Y* are Galois-stable.
2. B=Uues a“andy = Uyer W for any Galois-stable B and Y .
3. Galois-stable sets are closed under arbitrary intersections.

Proof. Ttem (1) immediately follows from Lemma 1 (3). Let us show item 2. The
inclusion B C (J,cpa't immediately follows from a € a'* for any a € B. Conversely,
since B is Galois-stable, a € B implies a'™ C B™ = B, hence |J,cga'* C B, as required.
The proof for Y is analogous. Item (3) immediately follows from Fact 1 and Exercise
4 of Lecture 2. O

2.2 I-compatible relations

Definition 1. For any P = (A,X,I), any S CA x X (resp. S C X X A) is I-compatible if
SO [x] and SV [a] (resp. $[a] and S [x]) are Galois-stable for all x and a.

Item 3 of Lemma 1 immediately implies that / is an /-compatible relation.
Lemma 3. For every polarity P = (A, X,I) and all RCAxX and T CX x A,
1. IfR is I-compatible, then RO [Y] = RO Y] and RV [B] = RV [B).

2. If T is I-compatible, then TV [Y] = TW[Y¥1] and T [B] = T(O) [B1].

Proof. We only prove the first identity. By Lemma 1 (2), we have ¥ C Y+, which im-
plies RO [Y+1] € RO)[¥] by Lemma 1 (1). Conversely, if a € RO [Y], i.e. ¥ € R(V[a],
then Y+ C (RW[a])*T = RMW[q], the last identity holding since R is I-compatible.
Hence, a € RO [Y*1], as required. i

Exercise 2. Prove the remaining identities of the lemma above.
Lemma 4. For every polarity P = (A,X,I) and al RCAxX and T CX X A,

1. If R is I-compatible and Y,B are Galois-stable, then R)[Y] and R\ [B] are
Galois-stable.

2. If T is I-compatible and Y,B are Galois-stable, then T'®)[B] and T"[Y] are
Galois-stable.

Proof. We only prove that R©)[Y] is Galois-stable. Since ¥ = Uyer{y}, by Lemma 1
),

RO =ROIU Y = N RO = MR (1)

yey yey yey

By the I-compatibility of R, the last term is an intersection of Galois-stable sets, which
is Galois-stable (cf. Lemma 2 (3)). O

Exercise 3. Complete the proof of the lemma above.



2.3 Enriched formal contexts

The following structures are generalizations of Kripke frames.

Definition 2. An enriched formal context (or polarity-based .Z-frame) is a tuple
F = (P,RD,RQ)

such that P = (A,X,I) is a formal context, and Rn C A XX and Ro C X X A are
I-compatible relations, that is, Réo) [x] (resp. Rg)) [a]) and Rl(jl) [a] (resp. Rg)[x] ) are

Galois-stable for all x € X and a € A. The complex algebra of F is
Fr = (P+’ [RD]» <R<>>)7

where P is the concept lattice of P, and [Rp] and (Re) are unary operations on P™
defined as follows: for every ¢ = ([[c], (c])) € P,

[Role := R [()), RS [(cD))  and  (Ro)e := (R[N, RY [[e])-

Lemma 4 and the /-compatibility of Ry and R ensure that the assignments above
define operations [Rg] and (R¢) on P,

Lemma 5. For any polarity-based frame F = (P,Rg, Ry, ), the algebra Ft = (P, [Ry], (Ro))
is a complete normal lattice expansion such that [Rp] is completely meet-preserving
and (Re) is completely join-preserving.

Proof. Let Rg C A X X and Ry C X X A be defined as aRgx iff xRea and xRea iff
aRpx. The I-compatibility of Ry and R, immediately implies that Rgq and Re are also
I-compatible. Hence, by Lemma 4, the following assignments define operations [Rg]
and (R4 ) on P*: for every ¢ = ([[c], (¢c])) € PT,

[Rale := (R ()], RE (D)) and  (Ra)e = (RS [[el))*, R ([]]).

Since P is a complete lattice, by [1, Proposition 7.31], to show that [Rg] is completely
meet-preserving and (R ) is completely join-preserving, it is enough to show that (Re)
is the left adjoint of [Ry] and that [Ra] is the right adjoint of (R,). For any ¢,d € P,

(Reyc <d iff ([d]) C R(,0> [[c]] ordering of concepts
ift  (d)) CRY[[c]] (definition of Re)
iff  [c] C R(DO) [([d]))] (Galois connection)
iff ¢ <[Rg]d. ordering of concepts
Likewise, one shows that [Rg] is the right adjoint of (R). i

Exercise 4. Prove that [Ra| is the right adjoint of (Rs).



Interpretation of modal formulas in polarity-based frames. For any enriched for-
mal context F = (P,Rp, Rs), a valuation on Fis amap V : Prop — F*. A polarity-based
Z-model is a tuple M = (F, V). For every enriched formal context F = (P, Ry, Rs, ), any
valuation V on F extends to an interpretation map of .Z’-formulas defined as follows:

V(p) E (], ()[p]))

(Xi X)

(Tel N v, (Tl N [w)')
( ) (
(

(@) N (WD), (@) N ()
Rg (@), RY[(@D]))
viop) = (RO1TeIRY[Te])

As we discussed in the previous lecture, the homomorphic extension of each valua-
tion gives rise to the recursive definition of the relations of “membership” I of objects
in categories, and of features “describing” categories (>-) extended to all .Z-formulas,
and hence also to modal formulas. Hence, spelling out the definition of the homomor-
phic extension of a given assignment on the complex algebra of a polarity-based frame
according to the following conditions:

=
s
>
\/\/S\/\/
I

Myar @ iff ac[o]u Mx>¢ iff x€ (@)u

yields the following recursive definition of the “membership relation” I+ of objects in
categories, and of features “describing” categories (>-) extended to the interpretation
of modal .Z-formulas:

M,aroe iff forallx e X,if M,x > ¢, then aRpx

M,x>=no¢ iff forallae€A,if M,ar 0@, then alx.

M,a - O iff forallx € X, if M,x > ¢¢, then alx

M,x > <@ iff foralla€A,if M,a - ¢, then xRsa.

Thus, in each model, 0@ is interpreted as the concept whose members are those objects
which are Ry-related to every feature in the description of ¢, and ¢ @ is interpreted as
the category described by those features which are R -related to every member of
¢. To illustrate this with a concrete example, consider the enriched formal context
represented on the left hand side of the picture below (for simplicity’s sake R is not
represented, and the black and red dashed lines refer to elements that are both /-related
and Ry-related ):

p,ap 0Op
X y b4
X
[aRD
A
a b c d
p p,0p




Finally, as to the interpretation of sequents:

MEoery iff [@]Cy] iff foralla€A,ifM,ar @, then M,al y
iff (y]) C (o)) iff forallxeX,if M,x > y, then M,x > @.

A sequent ¢ b v is valid on an enriched formal context F (in symbols: F |= ¢ + ) if
M |= ¢ I y for every model M based on F.

3 Soundness and completeness

In the present section we prove the following

Proposition 1. The basic normal modal logic of formal concepts is sound and complete
w.r.t. the class of polarity-based frames.

3.1 Soundness
Proposition 2. For any polarity-based model M,
1. ifM=ot vy, thenM |=0¢ F Oy and M |= 00 F Oy,
2. METHOT andM oL F L;
3 MEopAoyFO(@AY) andM EO(@V ) EOeV o,

Proof. We only prove the statements relative to O-formulas. If M |= ¢ b v, then [[¢]] C
[w] and (y]) C ([@]), which implies, by Lemma 1 (1), that

[a9] = RS [(#)] < RS [(wD] =[],
which proves item (1). As to item (2), it is enough to show that A = [[T] C [OT] =
R(DO)[([T})} =RY [AT]. By adjunction, it is enough to show that AT C Rl(jl)[A]. Since
Ry is I-compatible and A is Galois-stable, Lemma 4 (1) implies that Rl(jl) [A] is Galois-
stable, hence it is enough to show that AT C (R.(jl) [A])*. For this, it is enough to show
that (Rl(j1> [A])* C A, which is certainly the case. As to item (3),

o) Aow)] = [o(e)]N[o(y)] definition of -] on A-formulas
= RO[(e)]NRY[(w])] definition of [] on O-formulas
= R () U ()] Lemma 1 (4)
= RYN(@)U(w))*]  Lemma3
= RYU(@) n(w)M']  Lemmal (@)
= RY[[eINIwD)  V(9),V(w) formal concepts
= R(DO) (oA u/]])T] definition of [|-]] on A-formulas
= ROoAy]) definition of ()
= [o(eAy)] definition of [[-]] on O-formulas

Exercise 5. Complete the proof of the proposition above.



3.2 Completeness

The completeness of L can be proven via a standard canonical model construction. For
any lattice with normal operators (L,0, <), let F, = (PL, Rn, Ro ) be defined as follows:
P = (A,X,I) where A (resp. X) is the set of lattice filters (resp. ideals) of L, and alx
iff aNx # @. Moreover, let Ry CA x X and R, C X x A be defined as follows:

aRox iff 0Ou € afor some u € L such that u € x
XRea iff  Qu € xfor some u € L such that u € a.

In what follows, for any a € A and x € X, we let

Ox:={ouecl|ucx} o 'a:={ucl|ouca}
Ca:={ouel|uca} O lx:={ucl|oucx}.

Lemma 6. For F, = (PL,Rn,Re) as above, and any a € A and x € X,
1 RI(]())[x] ={beA|bNox+2} and Rg))[a] ={yeX|ynoa+ o}
2. RVl ={yex|ynolaze} and RV ={becA|bno'x%a}.
3. Teolazo and Leo'x#o.

Exercise 6. Prove Lemma 6. Hint for item (3): use thatoT =T and &1L = L.

Lemma 7. For Fy, as above, and any a € A and x € X,
L RO ={yex|omxCy} and (R[]} ={beA|0aC b}
2. R ={peA|olach} and (RYN)={yex|o xCy}

3. RO ={bea|bnoxz o) =RV and (RO [a))" = {y e X |ynoa#
21— RO11-
} =R’ al;

4. RV ={yex|ynolazt ol =RV 4 and RY ) ={becA|bn
o lxz o} =RV

Proof. We only sketch the proof of the identities about Ry. Items (1) and (2) readily
follow from Lemma 6 (1) and (2). As to items (3) and (4), from the previous items it
immediately follows that (R [x])™* = {b € A | [ox] Nb # @} and (RY [a])* = {y €
X | |[o~'a) Ny # @}, where [Ox] and |0~ 'a| respectively denote the ideal generated
by Ox and the filter generated by 0~ 'a. Then, using the monotonicity of 0, and that any
x € X is closed under finite joins and any b € A is upward-closed, one can show that
{beA|[ox]Nb+o}={beA|oxNb+ o} = Rl(jo) [x], and using the meet-preservation
of O, one can show that {y e X | [0 la|Ny# @} ={yeX |olany+ 2} = Rl(jl)[a},
as required. Notice that the last equality holds for every a € A under the assumption
that 0~'a # @, which, by Lemma 6 (3), is guaranteed by 0O being normal. O

Exercise 7. Complete the proof of the lemma above.



Items (3) and (4) of the lemma above immediately imply that:
Corollary 1. Fy, is an enriched formal context (cf. Definition 2).

Lemma 8. For Fy, as above, and any a € A and x € X,
1. Ifx is the ideal generated by some u € L, then RY x| ={acA|oucadal
2. If a is the filter generated by some u € L, then RES) [a] ={xeX | oucx}.

Proof. By Lemma 6, aRpx iff a € Rfjo) [x] iff anOx # @. By assumption, x is the ideal
generated by u, hence u is the greatest element of x; so the monotonicity of O implies
that Ou is the greatest element of Ox. Since a is a filter, and hence is upward-closed,
aNOx # @ is equivalent to Ou € a, which completes the proof. O

Exercise 8. Complete the proof of the lemma above.

The canonical enriched formal context is defined by instantiating the construction
above to the Lindembaum-Tarski algebra of L. In this case, let V be the valuation such
that [[p]] (resp. (p)) is the set of the filters (resp. ideals) to which p belongs, and let
M = (FL, V) be the canonical model. Then the following holds for M:

Lemma 9 (Truth lemma). For every ¢ € .,
M,al @ iff p€a and M,x > @ iff ¢ €x.

Proof. By induction on ¢. We only show the inductive step for ¢ := 0O0.

M,a - 0o

iff aeRY (o)) definition of [00]

iff ac Rl(j(» [{x|oex}] induction hypothesis

iff forallxeX,ifoce€xthenanNOx# @ definition of Ry

iff anofo]+@ [o] is the smallestx € X s.t. 0 € x

iff 0o e€a. a upward-closed, and O0 is the greatest el. in O[]
M,x > 00

iff xe(oo))

iff xe oo

iff xe({acA|ooea})! proof above

iff foralla€A,if0c €athenxNa+ @

iff xN|oo|+#o |Oo | is the smallesta € A s.t. OC € a

iff Do ex. x downward-closed, and O is the smallest el. in |00 |

|
Exercise 9. Complete the proof of the truth lemma.

Proposition 3 (Completeness). If ¢ - y is an L -sequent which is not derivable in L,
then ML [£= @ - .



Proof. 1f the £-sequent ¢ - y is not derivable in L, then a N x = @, where a denotes
the filter in the Lindenbaum-Tarski algebra generated by ¢ and x denotes the ideal in
the Lindenbaum-Tarski algebra generated by y. Then the Truth lemma implies that

a € [@] and a ¢ [y]], hence [@] & [v], i.e. M [~ ¢ - v, as required. m|

References

[1] B. Davey and H. Priestley. Introduction to lattices and order. Cambridge univ.
press, 2002.



