Logical foundations of categorization theory Lecture 4

Fei Liang and Alessandra Palmigiano

July 29, 2021

Abstract

In this lecture, we show how formal contexts can be *enriched* with additional relations so as to make a (sound and complete) Kripke-style semantics of a basic normal *modal* logic of categories and concepts.

1 Basic normal modal logic of categories

Following the general methodology discussed in the previous lecture for interpreting the basic logic of categories on polarities, we are going to introduce a basic normal lattice-based modal logic, and interpret it on polarity-based (i.e. formal-context-based) relational structures.

Let Prop be a (countable or finite) set of atomic propositions. The language \mathscr{L} of the *basic normal modal logic of formal concepts* is defined as follows:

$$\varphi := \bot \mid \top \mid p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \Box \varphi \mid \Diamond \varphi$$

The *basic*, or *minimal normal modal* \mathcal{L} -logic is a set \mathbf{L} of sequents $\varphi \vdash \psi$ (which intuitively read " φ is a subconcept of ψ ") with $\varphi, \psi \in \mathcal{L}$, containing the following axioms:

• Sequents for propositional connectives:

$$\begin{array}{ll} p \vdash p, & \qquad \bot \vdash p, & \qquad p \vdash \top, \\ p \vdash p \lor q, & \qquad q \vdash p \lor q, & \qquad p \land q \vdash p, & \qquad p \land q \vdash q, \end{array}$$

• Sequents for modal operators:

$$\begin{array}{ll} \top \vdash \Box \top & \Box p \land \Box q \vdash \Box (p \land q) \\ \Diamond \bot \vdash \bot & \Diamond p \lor \Diamond q \vdash \Diamond (p \lor q) \end{array}$$

and closed under the following inference rules:

$$\frac{\varphi \vdash \chi \quad \chi \vdash \psi}{\varphi \vdash \psi} \qquad \frac{\varphi \vdash \psi}{\varphi \left(\chi/p\right) \vdash \psi(\chi/p)} \qquad \frac{\chi \vdash \varphi \quad \chi \vdash \psi}{\chi \vdash \varphi \land \psi} \qquad \frac{\varphi \vdash \chi \quad \psi \vdash \chi}{\varphi \lor \psi \vdash \chi}$$
$$\frac{\varphi \vdash \psi}{\Box \varphi \vdash \Box \psi} \qquad \frac{\varphi \vdash \psi}{\Diamond \varphi \vdash \Diamond \psi}$$

Intuitively, the modal fragment of **L** can be use e.g. to incorporate the viewpoints of individual agents into the syllogistic reasoning supported by the propositional fragment of **L**. By an \mathcal{L} -logic we understand any extension of **L** with \mathcal{L} -axioms $\varphi \vdash \psi$.

2 Polarity-based frames and their complex algebras

In order to endow the basic normal modal logic **L** defined above with relational semantics, in this section, we introduce relational structures $\mathbb{F} = (\mathbb{P}, R_{\square}, R_{\diamondsuit})$, such that $\mathbb{P} = (A, X, I)$ is a formal context, and R_{\square} and R_{\diamondsuit} are suitable relations that respectively induce a normal box-type (i.e. completely meet-preserving) operation and a normal diamond-type (i.e. completely join-preserving) operation on the concept lattice \mathbb{P}^+ . In order to guarantee that these operations are well defined on \mathbb{P}^+ , we need to require some properties of R_{\square} and R_{\diamondsuit} , which we capture by the notion of *I-compatibility*, and for this, we will need some notation and facts which we collect in the next two sections.

2.1 Notation and basic properties

In what follows, we fix two sets A and X, and use a,b (resp. x,y) for elements of A (resp. X), and B,C,A_j (resp. Y,W,X_j) for subsets of A (resp. of X) throughout this section. For any relation $S \subseteq U \times W$, let

$$S^{(1)}[U'] := \{ w \mid \forall u (u \in U' \Rightarrow uSw) \} \qquad S^{(0)}[W'] := \{ u \mid \forall w (w \in W' \Rightarrow uSw) \}.$$

Well known properties of this construction (cf. [1, Sections 7.22-7.29]) are stated in the following lemma.

Lemma 1. 1. $B \subseteq C$ implies $S^{(1)}[C] \subseteq S^{(1)}[B]$, and $Y \subseteq W$ implies $S^{(0)}[W] \subseteq S^{(0)}[Y]$.

- 2. $B \subseteq S^{(0)}[S^{(1)}[B]]$ and $Y \subseteq S^{(1)}[S^{(0)}[Y]]$.
- 3. $S^{(1)}[B] = S^{(1)}[S^{(0)}[S^{(1)}[B]]]$ and $S^{(0)}[Y] = S^{(0)}[S^{(1)}[S^{(0)}[Y]]]$.
- 4. $S^{(0)}[\bigcup \mathscr{Y}] = \bigcap_{Y \in \mathscr{Y}} S^{(0)}[Y] \text{ and } S^{(1)}[\bigcup \mathscr{B}] = \bigcap_{B \in \mathscr{B}} S^{(1)}[B].$

Exercise 1. Prove the statements of Lemma 1. Hint: for the first three items, use Exercise 4 and Example/Exercise 4 of Lecture 2.

As we have done e.g. in Example/Exercise 4 of Lecture 2, for any formal context $\mathbb{P}=(A,X,I)$, we sometimes use B^{\uparrow} for $I^{(1)}[B]$, and Y^{\downarrow} for $I^{(0)}[Y]$, and say that B (resp. Y) is *Galois-stable* if $B=B^{\uparrow\downarrow}$ (resp. $Y=Y^{\downarrow\uparrow}$). When $B=\{a\}$ (resp. $Y=\{x\}$) we write $a^{\uparrow\downarrow}$ for $\{a\}^{\uparrow\downarrow}$ (resp. $x^{\downarrow\uparrow}$ for $\{x\}^{\downarrow\uparrow}$). The following lemma collects more well known facts (cf. [1, Sections 7.22-7.29]:

Lemma 2. 1. B^{\uparrow} and Y^{\downarrow} are Galois-stable.

- 2. $B = \bigcup_{a \in B} a^{\uparrow \downarrow}$ and $Y = \bigcup_{v \in Y} y^{\downarrow \uparrow}$ for any Galois-stable B and Y.
- 3. Galois-stable sets are closed under arbitrary intersections.

Proof. Item (1) immediately follows from Lemma 1 (3). Let us show item 2. The inclusion $B \subseteq \bigcup_{a \in B} a^{\uparrow \downarrow}$ immediately follows from $a \in a^{\uparrow \downarrow}$ for any $a \in B$. Conversely, since B is Galois-stable, $a \in B$ implies $a^{\uparrow \downarrow} \subseteq B^{\uparrow \downarrow} = B$, hence $\bigcup_{a \in B} a^{\uparrow \downarrow} \subseteq B$, as required. The proof for Y is analogous. Item (3) immediately follows from Fact 1 and Exercise 4 of Lecture 2.

2.2 *I*-compatible relations

Definition 1. For any $\mathbb{P} = (A, X, I)$, any $S \subseteq A \times X$ (resp. $S \subseteq X \times A$) is *I*-compatible if $S^{(0)}[x]$ and $S^{(1)}[a]$ (resp. $S^{(0)}[a]$ and $S^{(1)}[x]$) are Galois-stable for all x and a.

Item 3 of Lemma 1 immediately implies that *I* is an *I*-compatible relation.

Lemma 3. For every polarity $\mathbb{P} = (A, X, I)$ and all $R \subseteq A \times X$ and $T \subseteq X \times A$,

- 1. If R is I-compatible, then $R^{(0)}[Y] = R^{(0)}[Y^{\downarrow\uparrow}]$ and $R^{(1)}[B] = R^{(1)}[B^{\uparrow\downarrow}]$.
- 2. If T is I-compatible, then $T^{(1)}[Y] = T^{(1)}[Y^{\downarrow\uparrow}]$ and $T^{(0)}[B] = T^{(0)}[B^{\uparrow\downarrow}]$.

Proof. We only prove the first identity. By Lemma 1 (2), we have $Y \subseteq Y^{\downarrow\uparrow}$, which implies $R^{(0)}[Y^{\downarrow\uparrow}] \subseteq R^{(0)}[Y]$ by Lemma 1 (1). Conversely, if $a \in R^{(0)}[Y]$, i.e. $Y \subseteq R^{(1)}[a]$, then $Y^{\downarrow\uparrow} \subseteq (R^{(1)}[a])^{\downarrow\uparrow} = R^{(1)}[a]$, the last identity holding since R is I-compatible. Hence, $a \in R^{(0)}[Y^{\downarrow\uparrow}]$, as required.

Exercise 2. Prove the remaining identities of the lemma above.

Lemma 4. For every polarity $\mathbb{P} = (A, X, I)$ and all $R \subseteq A \times X$ and $T \subseteq X \times A$,

- 1. If R is I-compatible and Y,B are Galois-stable, then $R^{(0)}[Y]$ and $R^{(1)}[B]$ are Galois-stable.
- 2. If T is I-compatible and Y,B are Galois-stable, then $T^{(0)}[B]$ and $T^{(1)}[Y]$ are Galois-stable.

Proof. We only prove that $R^{(0)}[Y]$ is Galois-stable. Since $Y = \bigcup_{y \in Y} \{y\}$, by Lemma 1 (4),

$$R^{(0)}[Y] = R^{(0)}[\bigcup_{y \in Y} \{y\}] = \bigcap_{y \in Y} R^{(0)}[\{y\}] = \bigcap_{y \in Y} R^{(0)}[y].$$
 (1)

By the *I*-compatibility of R, the last term is an intersection of Galois-stable sets, which is Galois-stable (cf. Lemma 2 (3)).

Exercise 3. Complete the proof of the lemma above.

2.3 Enriched formal contexts

The following structures are generalizations of Kripke frames.

Definition 2. An enriched formal context (or polarity-based \mathcal{L} -frame) is a tuple

$$\mathbb{F} = (\mathbb{P}, R_{\square}, R_{\diamondsuit})$$

such that $\mathbb{P}=(A,X,I)$ is a formal context, and $R_{\square}\subseteq A\times X$ and $R_{\diamondsuit}\subseteq X\times A$ are *I*-compatible relations, that is, $R_{\square}^{(0)}[x]$ (resp. $R_{\diamondsuit}^{(0)}[a]$) and $R_{\square}^{(1)}[a]$ (resp. $R_{\diamondsuit}^{(1)}[x]$) are Galois-stable for all $x\in X$ and $a\in A$. The complex algebra of \mathbb{F} is

$$\mathbb{F}^+ = (\mathbb{P}^+, [R_{\square}], \langle R_{\diamondsuit} \rangle),$$

where \mathbb{P}^+ is the concept lattice of \mathbb{P} , and $[R_{\square}]$ and $\langle R_{\diamondsuit} \rangle$ are unary operations on \mathbb{P}^+ defined as follows: for every $c = ([[c]], ([c]]) \in \mathbb{P}^+$,

$$[R_{\square}]c := (R_{\square}^{(0)}[([c])], (R_{\square}^{(0)}[([c])])^{\uparrow}) \quad and \quad \langle R_{\diamondsuit} \rangle c := ((R_{\diamondsuit}^{(0)}[[[c]])^{\downarrow}, R_{\diamondsuit}^{(0)}[[[c]]]).$$

Lemma 4 and the *I*-compatibility of R_{\square} and R_{\Diamond} ensure that the assignments above define operations $[R_{\square}]$ and $\langle R_{\Diamond} \rangle$ on \mathbb{P}^+ .

Lemma 5. For any polarity-based frame $\mathbb{F} = (\mathbb{P}, R_{\square}, R_{\diamondsuit})$, the algebra $\mathbb{F}^+ = (\mathbb{P}^+, [R_{\square}], \langle R_{\diamondsuit} \rangle)$ is a complete normal lattice expansion such that $[R_{\square}]$ is completely meet-preserving and $\langle R_{\diamondsuit} \rangle$ is completely join-preserving.

Proof. Let $R_{\blacksquare} \subseteq A \times X$ and $R_{\spadesuit} \subseteq X \times A$ be defined as $aR_{\blacksquare}x$ iff $xR_{\diamondsuit}a$ and $xR_{\spadesuit}a$ iff $aR_{\square}x$. The *I*-compatibility of R_{\square} and R_{\diamondsuit} immediately implies that R_{\blacksquare} and R_{\spadesuit} are also *I*-compatible. Hence, by Lemma 4, the following assignments define operations $[R_{\blacksquare}]$ and $\langle R_{\spadesuit} \rangle$ on \mathbb{P}^+ : for every $c = ([[c]], ([c])) \in \mathbb{P}^+$,

$$[R_{\blacksquare}]c := (R^{(0)}_{\blacksquare}[([c])], (R^{(0)}_{\blacksquare}[([c])])^{\uparrow}) \quad \text{and} \quad \langle R_{\spadesuit} \rangle c := ((R^{(0)}_{\spadesuit}[[[c]])^{\downarrow}, R^{(0)}_{\spadesuit}[[[c]]]).$$

Since \mathbb{P}^+ is a complete lattice, by [1, Proposition 7.31], to show that $[R_{\square}]$ is completely meet-preserving and $\langle R_{\diamondsuit} \rangle$ is completely join-preserving, it is enough to show that $\langle R_{\spadesuit} \rangle$ is the left adjoint of $[R_{\square}]$ and that $[R_{\blacksquare}]$ is the right adjoint of $\langle R_{\diamondsuit} \rangle$. For any $c,d \in \mathbb{P}^+$,

$$\begin{split} \langle R_{\spadesuit} \rangle c \leq d & \text{ iff } & ([d]) \subseteq R_{\spadesuit}^{(0)}[[[c]]] & \text{ ordering of concepts} \\ & \text{ iff } & ([d]) \subseteq R_{\square}^{(1)}[[[c]]] & \text{ (definition of } R_{\spadesuit}) \\ & \text{ iff } & [[c]] \subseteq R_{\square}^{(0)}[([d])] & \text{ (Galois connection)} \\ & \text{ iff } & c \leq [R_{\square}]d. & \text{ ordering of concepts} \end{split}$$

Likewise, one shows that $[R_{\blacksquare}]$ is the right adjoint of $\langle R_{\diamondsuit} \rangle$.

Exercise 4. *Prove that* $[R_{\blacksquare}]$ *is the right adjoint of* $\langle R_{\diamondsuit} \rangle$ *.*

Interpretation of modal formulas in polarity-based frames. For any enriched formal context $\mathbb{F} = (\mathbb{P}, R_{\square}, R_{\diamondsuit})$, a *valuation* on \mathbb{F} is a map $V : \mathsf{Prop} \to \mathbb{F}^+$. A *polarity-based* \mathscr{L} -model is a tuple $\mathbb{M} = (\mathbb{F}, V)$. For every enriched formal context $\mathbb{F} = (\mathbb{P}, R_{\square}, R_{\diamondsuit})$, any valuation V on \mathbb{F} extends to an interpretation map of \mathscr{L} -formulas defined as follows:

```
\begin{array}{rcl} V(p) & = & ([\![p]\!], ([\![p]\!]) \\ V(\top) & = & (A, A^{\uparrow}) \\ V(\bot) & = & (X^{\downarrow}, X) \\ V(\varphi \land \psi) & = & ([\![\varphi]\!] \cap [\![\psi]\!], ([\![\varphi]\!] \cap [\![\psi]\!])^{\uparrow}) \\ V(\varphi \lor \psi) & = & ((([\![\varphi]\!]) \cap ([\![\psi]\!])^{\downarrow}, ([\![\varphi]\!]) \cap ([\![\psi]\!])) \\ V(\Box \varphi) & = & (R_{\Box}^{(0)}[(\![\varphi]\!]), (R_{\Box}^{(0)}[(\![\varphi]\!]))^{\uparrow}) \\ V(\diamondsuit \varphi) & = & ((R_{\diamondsuit}^{(0)}[[\![\varphi]\!])^{\downarrow}, R_{\diamondsuit}^{(0)}[[\![\varphi]\!]]) \end{array}
```

As we discussed in the previous lecture, the homomorphic extension of each valuation gives rise to the recursive definition of the relations of "membership" \Vdash of objects in categories, and of features "describing" categories (\succ) extended to all \mathscr{L} -formulas, and hence also to modal formulas. Hence, spelling out the definition of the homomorphic extension of a given assignment on the complex algebra of a polarity-based frame according to the following conditions:

$$\mathbb{M}, a \Vdash \varphi$$
 iff $a \in [\![\varphi]\!]_{\mathbb{M}}$ $\mathbb{M}, x \succ \varphi$ iff $x \in (\![\varphi]\!]_{\mathbb{M}}$

yields the following recursive definition of the "membership relation" \vdash of objects in categories, and of features "describing" categories (\succ) extended to the interpretation of modal \mathscr{L} -formulas:

```
\mathbb{M}, a \Vdash \Box \varphi iff for all x \in X, if \mathbb{M}, x \succ \varphi, then aR_{\Box}x \mathbb{M}, x \succ \Box \varphi iff for all a \in A, if \mathbb{M}, a \Vdash \Box \varphi, then aIx. \mathbb{M}, a \Vdash \Diamond \varphi iff for all x \in X, if \mathbb{M}, x \succ \Diamond \varphi, then aIx \mathbb{M}, x \succ \Diamond \varphi iff for all a \in A, if \mathbb{M}, a \Vdash \varphi, then xR_{\Diamond}a.
```

Thus, in each model, $\Box \varphi$ is interpreted as the concept whose members are those objects which are R_{\Box} -related to every feature in the description of φ , and $\Diamond \varphi$ is interpreted as the category described by those features which are R_{\Diamond} -related to every member of φ . To illustrate this with a concrete example, consider the enriched formal context represented on the left hand side of the picture below (for simplicity's sake R_{\Diamond} is not represented, and the black and red dashed lines refer to elements that are both I-related and R_{\Box} -related):

Finally, as to the interpretation of sequents:

```
\mathbb{M} \models \varphi \vdash \psi \quad \text{iff} \quad \llbracket \varphi \rrbracket \subseteq \llbracket \psi \rrbracket \quad \text{iff} \quad \text{for all } a \in A, \text{ if } \mathbb{M}, a \Vdash \varphi, \text{ then } \mathbb{M}, a \Vdash \psi\text{iff} \quad (\llbracket \psi \rrbracket) \subseteq (\llbracket \varphi \rrbracket) \quad \text{iff} \quad \text{for all } x \in X, \text{ if } \mathbb{M}, x \succ \psi, \text{ then } \mathbb{M}, x \succ \varphi.
```

A sequent $\varphi \vdash \psi$ is *valid* on an enriched formal context \mathbb{F} (in symbols: $\mathbb{F} \models \varphi \vdash \psi$) if $\mathbb{M} \models \varphi \vdash \psi$ for every model \mathbb{M} based on \mathbb{F} .

3 Soundness and completeness

In the present section we prove the following

Proposition 1. The basic normal modal logic of formal concepts is sound and complete w.r.t. the class of polarity-based frames.

3.1 Soundness

Proposition 2. For any polarity-based model M

- 1. if $\mathbb{M} \models \varphi \vdash \psi$, then $\mathbb{M} \models \Box \varphi \vdash \Box \psi$ and $\mathbb{M} \models \Diamond \varphi \vdash \Diamond \psi$;
- 2. $\mathbb{M} \models \top \vdash \Box \top$ and $\mathbb{M} \models \Diamond \bot \vdash \bot$;
- 3. $\mathbb{M} \models \Box \varphi \land \Box \psi \vdash \Box (\varphi \land \psi) \text{ and } \mathbb{M} \models \Diamond (\varphi \lor \psi) \vdash \Diamond \varphi \lor \Diamond \psi.$

Proof. We only prove the statements relative to \Box -formulas. If $\mathbb{M} \models \varphi \vdash \psi$, then $[\![\varphi]\!] \subseteq [\![\psi]\!]$ and $(\![\psi]\!] \subseteq (\![\varphi]\!]$, which implies, by Lemma 1 (1), that

$$[\![\Box \varphi]\!] = R_{\Box}^{(0)}[([\varphi])] \subseteq R_{\Box}^{(0)}[([\psi])] = [\![\Box \psi]\!],$$

which proves item (1). As to item (2), it is enough to show that $A = \llbracket \top \rrbracket \subseteq \llbracket \Box \top \rrbracket = R_{\Box}^{(0)}[([\top])] = R_{\Box}^{(0)}[A^{\uparrow}]$. By adjunction, it is enough to show that $A^{\uparrow} \subseteq R_{\Box}^{(1)}[A]$. Since R_{\Box} is *I*-compatible and *A* is Galois-stable, Lemma 4 (1) implies that $R_{\Box}^{(1)}[A]$ is Galois-stable, hence it is enough to show that $A^{\uparrow} \subseteq (R_{\Box}^{(1)}[A])^{\downarrow \uparrow}$. For this, it is enough to show that $(R_{\Box}^{(1)}[A])^{\downarrow \downarrow} \subseteq A$, which is certainly the case. As to item (3),

Exercise 5. Complete the proof of the proposition above.

3.2 Completeness

The completeness of $\mathbf L$ can be proven via a standard canonical model construction. For any lattice with normal operators $(\mathbb L, \square, \diamondsuit)$, let $\mathbb F_{\mathbb L} = (\mathbb P_{\mathbb L}, R_{\square}, R_{\diamondsuit})$ be defined as follows: $\mathbb P_{\mathbb L} = (A, X, I)$ where A (resp. X) is the set of lattice filters (resp. ideals) of $\mathbb L$, and AIX iff $A \cap X \neq \emptyset$. Moreover, let $A \cap X \neq \emptyset$ and $A \cap X \neq \emptyset$ be defined as follows:

$$aR_{\square}x$$
 iff $\square u \in a$ for some $u \in \mathbb{L}$ such that $u \in x$ $xR_{\lozenge}a$ iff $\lozenge u \in x$ for some $u \in \mathbb{L}$ such that $u \in a$.

In what follows, for any $a \in A$ and $x \in X$, we let

$$\Box x := \{ \Box u \in \mathbb{L} \mid u \in x \} \qquad \Box^{-1} a := \{ u \in \mathbb{L} \mid \Box u \in a \}$$
$$\Diamond a := \{ \Diamond u \in \mathbb{L} \mid u \in a \} \qquad \Diamond^{-1} x := \{ u \in \mathbb{L} \mid \Diamond u \in x \}.$$

Lemma 6. For $\mathbb{F}_{\mathbb{L}} = (\mathbb{P}_{\mathbb{L}}, R_{\square}, R_{\diamondsuit})$ as above, and any $a \in A$ and $x \in X$,

1.
$$R_{\square}^{(0)}[x] = \{b \in A \mid b \cap \square x \neq \emptyset\}$$
 and $R_{\diamondsuit}^{(0)}[a] = \{y \in X \mid y \cap \diamondsuit a \neq \emptyset\};$

$$2. \ R_{\square}^{(1)}[a] = \{ y \in X \mid y \cap \square^{-1}a \neq \emptyset \} \quad and \quad R_{\diamondsuit}^{(1)}[x] = \{ b \in A \mid b \cap \diamondsuit^{-1}x \neq \emptyset \}.$$

3.
$$\top \in \Box^{-1} a \neq \emptyset$$
 and $\bot \in \Diamond^{-1} x \neq \emptyset$.

Exercise 6. Prove Lemma 6. Hint for item (3): use that $\Box \top = \top$ and $\Diamond \bot = \bot$.

Lemma 7. For $\mathbb{F}_{\mathbb{L}}$ as above, and any $a \in A$ and $x \in X$,

$$1. \ \ (R_{\square}^{(0)}[x])^{\uparrow} = \{y \in X \mid \square x \subseteq y\} \quad \ and \quad \ (R_{\diamondsuit}^{(0)}[a])^{\downarrow} = \{b \in A \mid \diamondsuit a \subseteq b\};$$

2.
$$(R_{\Box}^{(1)}[a])^{\downarrow} = \{b \in A \mid \Box^{-1}a \subseteq b\}$$
 and $(R_{\Diamond}^{(1)}[x])^{\downarrow} = \{y \in X \mid \Diamond^{-1}x \subseteq y\};$

3.
$$(R_{\square}^{(0)}[x])^{\uparrow\downarrow} = \{b \in A \mid b \cap \square x \neq \emptyset\} = R_{\square}^{(0)}[x] \text{ and } (R_{\diamondsuit}^{(0)}[a])^{\downarrow\uparrow} = \{y \in X \mid y \cap \diamondsuit a \neq \emptyset\} = R_{\diamondsuit}^{(0)}[a];$$

4.
$$(R_{\square}^{(1)}[a])^{\downarrow\uparrow} = \{ y \in X \mid y \cap \square^{-1}a \neq \emptyset \} = R_{\square}^{(1)}[a] \text{ and } (R_{\diamondsuit}^{(1)}[x])^{\uparrow\downarrow} = \{ b \in A \mid b \cap \diamondsuit^{-1}x \neq \emptyset \} = R_{\diamondsuit}^{(1)}[x].$$

Proof. We only sketch the proof of the identities about R_{\square} . Items (1) and (2) readily follow from Lemma 6 (1) and (2). As to items (3) and (4), from the previous items it immediately follows that $(R_{\square}^{(0)}[x])^{\uparrow\downarrow} = \{b \in A \mid \lceil \square x \rceil \cap b \neq \emptyset\}$ and $(R_{\square}^{(1)}[a])^{\downarrow\uparrow} = \{y \in X \mid \lfloor \square^{-1}a \rfloor \cap y \neq \emptyset\}$, where $\lceil \square x \rceil$ and $\lfloor \square^{-1}a \rfloor$ respectively denote the ideal generated by $\square x$ and the filter generated by $\square^{-1}a$. Then, using the monotonicity of \square , and that any $x \in X$ is closed under finite joins and any $b \in A$ is upward-closed, one can show that $\{b \in A \mid \lceil \square x \rceil \cap b \neq \emptyset\} = \{b \in A \mid \square x \cap b \neq \emptyset\} = R_{\square}^{(0)}[x]$, and using the meet-preservation of \square , one can show that $\{y \in X \mid \square^{-1}a \rfloor \cap y \neq \emptyset\} = \{y \in X \mid \square^{-1}a \cap y \neq \emptyset\} = R_{\square}^{(1)}[a]$, as required. Notice that the last equality holds for every $a \in A$ under the assumption that $\square^{-1}a \neq \emptyset$, which, by Lemma 6 (3), is guaranteed by \square being normal.

Exercise 7. Complete the proof of the lemma above.

Items (3) and (4) of the lemma above immediately imply that:

Corollary 1. $\mathbb{F}_{\mathbb{L}}$ *is an enriched formal context (cf. Definition 2).*

Lemma 8. For $\mathbb{F}_{\mathbb{L}}$ as above, and any $a \in A$ and $x \in X$,

- 1. If x is the ideal generated by some $u \in \mathbb{L}$, then $R_{\square}^{(0)}[x] = \{a \in A \mid \square u \in a\}$.
- 2. If a is the filter generated by some $u \in \mathbb{L}$, then $R_{\diamondsuit}^{(0)}[a] = \{x \in X \mid \diamondsuit u \in x\}$.

Proof. By Lemma 6, $aR_{\square}x$ iff $a \in R_{\square}^{(0)}[x]$ iff $a \cap \square x \neq \emptyset$. By assumption, x is the ideal generated by u, hence u is the greatest element of x; so the monotonicity of \square implies that $\square u$ is the greatest element of $\square x$. Since a is a filter, and hence is upward-closed, $a \cap \square x \neq \emptyset$ is equivalent to $\square u \in a$, which completes the proof.

Exercise 8. Complete the proof of the lemma above.

The *canonical enriched formal context* is defined by instantiating the construction above to the Lindembaum-Tarski algebra of **L**. In this case, let V be the valuation such that $[\![p]\!]$ (resp. $(\![p]\!]$) is the set of the filters (resp. ideals) to which p belongs, and let $\mathbb{M} = (\mathbb{F}_{\mathbf{L}}, V)$ be the canonical model. Then the following holds for \mathbb{M} :

Lemma 9 (Truth lemma). *For every* $\varphi \in \mathcal{L}$,

```
\mathbb{M}, a \Vdash \varphi \text{ iff } \varphi \in a \quad and \quad \mathbb{M}, x \succ \varphi \text{ iff } \varphi \in x.
```

Proof. By induction on φ . We only show the inductive step for $\varphi := \Box \sigma$.

```
\mathbb{M}, a \Vdash \Box \sigma
iff a \in R_{\square}^{(0)}[([\sigma])]
iff a \in R_{\square}^{(0)}[\{x \mid \sigma \in x\}]
                                                                                   definition of \llbracket \Box \sigma \rrbracket
                                                                                   induction hypothesis
iff for all x \in X, if \sigma \in x then a \cap \Box x \neq \emptyset
                                                                                   definition of R_{\square}
iff a \cap \Box [\sigma] \neq \emptyset
                                                                                   \lceil \sigma \rceil is the smallest x \in X s.t. \sigma \in x
iff \Box \sigma \in a.
                                                                                   a upward-closed, and \Box \sigma is the greatest el. in \Box [\sigma]
         \mathbb{M}, x \succ \Box \sigma
iff x \in ([\Box \sigma])
iff x \in [\![\Box \sigma]\!]^{\uparrow}
iff x \in (\{a \in A \mid \Box \sigma \in a\})^{\uparrow}
                                                                                   proof above
iff for all a \in A, if \Box \sigma \in a then x \cap a \neq \emptyset
iff x \cap |\Box \sigma| \neq \emptyset
                                                                                   |\Box \sigma| is the smallest a \in A s.t. \Box \sigma \in a
        \Box \sigma \in x.
                                                                                   x downward-closed, and \Box \sigma is the smallest el. in |\Box \sigma|
```

Exercise 9. Complete the proof of the truth lemma.

Proposition 3 (Completeness). *If* $\varphi \vdash \psi$ *is an* \mathscr{L} -sequent which is not derivable in L, then $\mathbb{M} \not\models \varphi \vdash \psi$.

Proof. If the \mathcal{L} -sequent $\varphi \vdash \psi$ is not derivable in \mathbf{L} , then $a \cap x = \emptyset$, where a denotes the filter in the Lindenbaum-Tarski algebra generated by φ and x denotes the ideal in the Lindenbaum-Tarski algebra generated by ψ . Then the Truth lemma implies that $a \in [\![\varphi]\!]$ and $a \notin [\![\psi]\!]$, hence $[\![\varphi]\!] \nsubseteq [\![\psi]\!]$, i.e. $\mathbb{M} \not\models \varphi \vdash \psi$, as required. \square

References

[1] B. Davey and H. Priestley. *Introduction to lattices and order*. Cambridge univ. press, 2002.