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Abstract

In this lecture, we show how formal contexts can be enriched with additional
relations so as to make a (sound and complete) Kripke-style semantics of a basic
normal modal logic of categories and concepts.

1 Basic normal modal logic of categories
Following the general methodology discussed in the previous lecture for interpreting
the basic logic of categories on polarities, we are going to introduce a basic normal
lattice-based modal logic, and interpret it on polarity-based (i.e. formal-context-based)
relational structures.

Let Prop be a (countable or finite) set of atomic propositions. The language L of
the basic normal modal logic of formal concepts is defined as follows:

ϕ :=⊥ | > | p | ϕ ∧ϕ | ϕ ∨ϕ | �ϕ | ^ϕ

The basic, or minimal normal modal L -logic is a set L of sequents ϕ ` ψ (which
intuitively read “ϕ is a subconcept of ψ”) with ϕ,ψ ∈ L , containing the following
axioms:

• Sequents for propositional connectives:

p ` p, ⊥ ` p, p ` >,
p ` p∨q, q ` p∨q, p∧q ` p, p∧q ` q,

• Sequents for modal operators:

> ` �> �p∧�q ` �(p∧q)

^⊥ ` ⊥ ^p∨^q ` ^(p∨q)
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and closed under the following inference rules:

ϕ ` χ χ ` ψ

ϕ ` ψ

ϕ ` ψ

ϕ (χ/p) ` ψ (χ/p)
χ ` ϕ χ ` ψ

χ ` ϕ ∧ψ

ϕ ` χ ψ ` χ

ϕ ∨ψ ` χ

ϕ ` ψ

�ϕ ` �ψ

ϕ ` ψ

^ϕ ` ^ψ

Intuitively, the modal fragment of L can be use e.g. to incorporate the viewpoints of
individual agents into the syllogistic reasoning supported by the propositional fragment
of L. By an L -logic we understand any extension of L with L -axioms ϕ ` ψ .

2 Polarity-based frames and their complex algebras
In order to endow the basic normal modal logic L defined above with relational se-
mantics, in this section, we introduce relational structures F = (P,R�,R^), such that
P= (A,X , I) is a formal context, and R� and R^ are suitable relations that respectively
induce a normal box-type (i.e. completely meet-preserving) operation and a normal
diamond-type (i.e. completely join-preserving) operation on the concept lattice P+. In
order to guarantee that these operations are well defined on P+, we need to require
some properties of R� and R^, which we capture by the notion of I-compatibility, and
for this, we will need some notation and facts which we collect in the next two sections.

2.1 Notation and basic properties
In what follows, we fix two sets A and X , and use a,b (resp. x,y) for elements of A
(resp. X), and B,C,A j (resp. Y,W,X j) for subsets of A (resp. of X) throughout this
section. For any relation S⊆U×W , let

S(1)[U ′] := {w | ∀u(u ∈U ′⇒ uSw)} S(0)[W ′] := {u | ∀w(w ∈W ′⇒ uSw)}.

Well known properties of this construction (cf. [1, Sections 7.22-7.29]) are stated
in the following lemma.

Lemma 1. 1. B⊆C implies S(1)[C]⊆ S(1)[B], and Y ⊆W implies S(0)[W ]⊆ S(0)[Y ].

2. B⊆ S(0)[S(1)[B]] and Y ⊆ S(1)[S(0)[Y ]].

3. S(1)[B] = S(1)[S(0)[S(1)[B]]] and S(0)[Y ] = S(0)[S(1)[S(0)[Y ]]].

4. S(0)[
⋃

Y ] =
⋂

Y∈Y S(0)[Y ] and S(1)[
⋃

B] =
⋂

B∈B S(1)[B].

Exercise 1. Prove the statements of Lemma 1. Hint: for the first three items, use
Exercise 4 and Example/Exercise 4 of Lecture 2.

As we have done e.g. in Example/Exercise 4 of Lecture 2, for any formal context
P= (A,X , I), we sometimes use B↑ for I(1)[B], and Y ↓ for I(0)[Y ], and say that B (resp.
Y ) is Galois-stable if B = B↑↓ (resp. Y =Y ↓↑). When B = {a} (resp. Y = {x}) we write
a↑↓ for {a}↑↓ (resp. x↓↑ for {x}↓↑). The following lemma collects more well known
facts (cf. [1, Sections 7.22-7.29]:
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Lemma 2. 1. B↑ and Y ↓ are Galois-stable.

2. B =
⋃

a∈B a↑↓ and Y =
⋃

y∈Y y↓↑ for any Galois-stable B and Y .

3. Galois-stable sets are closed under arbitrary intersections.

Proof. Item (1) immediately follows from Lemma 1 (3). Let us show item 2. The
inclusion B ⊆

⋃
a∈B a↑↓ immediately follows from a ∈ a↑↓ for any a ∈ B. Conversely,

since B is Galois-stable, a ∈ B implies a↑↓ ⊆ B↑↓ = B, hence
⋃

a∈B a↑↓ ⊆ B, as required.
The proof for Y is analogous. Item (3) immediately follows from Fact 1 and Exercise
4 of Lecture 2. �

2.2 I-compatible relations
Definition 1. For any P= (A,X , I), any S⊆ A×X (resp. S⊆ X×A) is I-compatible if
S(0)[x] and S(1)[a] (resp. S(0)[a] and S(1)[x]) are Galois-stable for all x and a.

Item 3 of Lemma 1 immediately implies that I is an I-compatible relation.

Lemma 3. For every polarity P= (A,X , I) and all R⊆ A×X and T ⊆ X×A,

1. If R is I-compatible, then R(0)[Y ] = R(0)[Y ↓↑] and R(1)[B] = R(1)[B↑↓].

2. If T is I-compatible, then T (1)[Y ] = T (1)[Y ↓↑] and T (0)[B] = T (0)[B↑↓].

Proof. We only prove the first identity. By Lemma 1 (2), we have Y ⊆ Y ↓↑, which im-
plies R(0)[Y ↓↑] ⊆ R(0)[Y ] by Lemma 1 (1). Conversely, if a ∈ R(0)[Y ], i.e. Y ⊆ R(1)[a],
then Y ↓↑ ⊆ (R(1)[a])↓↑ = R(1)[a], the last identity holding since R is I-compatible.
Hence, a ∈ R(0)[Y ↓↑], as required. �

Exercise 2. Prove the remaining identities of the lemma above.

Lemma 4. For every polarity P= (A,X , I) and all R⊆ A×X and T ⊆ X×A,

1. If R is I-compatible and Y,B are Galois-stable, then R(0)[Y ] and R(1)[B] are
Galois-stable.

2. If T is I-compatible and Y,B are Galois-stable, then T (0)[B] and T (1)[Y ] are
Galois-stable.

Proof. We only prove that R(0)[Y ] is Galois-stable. Since Y =
⋃

y∈Y{y}, by Lemma 1
(4),

R(0)[Y ] = R(0)[
⋃
y∈Y

{y}] =
⋂
y∈Y

R(0)[{y}] =
⋂
y∈Y

R(0)[y]. (1)

By the I-compatibility of R, the last term is an intersection of Galois-stable sets, which
is Galois-stable (cf. Lemma 2 (3)). �

Exercise 3. Complete the proof of the lemma above.
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2.3 Enriched formal contexts
The following structures are generalizations of Kripke frames.

Definition 2. An enriched formal context (or polarity-based L -frame) is a tuple

F= (P,R�,R^)

such that P = (A,X , I) is a formal context, and R� ⊆ A× X and R^ ⊆ X × A are
I-compatible relations, that is, R(0)

� [x] (resp. R(0)
^ [a]) and R(1)

� [a] (resp. R(1)
^ [x]) are

Galois-stable for all x ∈ X and a ∈ A. The complex algebra of F is

F+ = (P+, [R�],〈R^〉),

where P+ is the concept lattice of P, and [R�] and 〈R^〉 are unary operations on P+

defined as follows: for every c = ([[c]],([c])) ∈ P+,

[R�]c := (R(0)
� [([c])],(R(0)

� [([c])])↑) and 〈R^〉c := ((R(0)
^ [[[c]]])↓,R(0)

^ [[[c]]]).

Lemma 4 and the I-compatibility of R� and R^ ensure that the assignments above
define operations [R�] and 〈R^〉 on P+.

Lemma 5. For any polarity-based frame F=(P,R�,R^), the algebra F+=(P+, [R�],〈R^〉)
is a complete normal lattice expansion such that [R�] is completely meet-preserving
and 〈R^〉 is completely join-preserving.

Proof. Let R� ⊆ A×X and R_ ⊆ X ×A be defined as aR�x iff xR^a and xR_a iff
aR�x. The I-compatibility of R� and R^ immediately implies that R� and R_ are also
I-compatible. Hence, by Lemma 4, the following assignments define operations [R�]
and 〈R_〉 on P+: for every c = ([[c]],([c])) ∈ P+,

[R�]c := (R(0)
� [([c])],(R(0)

� [([c])])↑) and 〈R_〉c := ((R(0)
_ [[[c]]])↓,R(0)

_ [[[c]]]).

Since P+ is a complete lattice, by [1, Proposition 7.31], to show that [R�] is completely
meet-preserving and 〈R^〉 is completely join-preserving, it is enough to show that 〈R_〉
is the left adjoint of [R�] and that [R�] is the right adjoint of 〈R^〉. For any c,d ∈ P+,

〈R_〉c≤ d iff ([d])⊆ R(0)
_ [[[c]]] ordering of concepts

iff ([d])⊆ R(1)
� [[[c]]] (definition of R_)

iff [[c]]⊆ R(0)
� [([d])] (Galois connection)

iff c≤ [R�]d. ordering of concepts

Likewise, one shows that [R�] is the right adjoint of 〈R^〉. �

Exercise 4. Prove that [R�] is the right adjoint of 〈R^〉.
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Interpretation of modal formulas in polarity-based frames. For any enriched for-
mal context F=(P,R�,R^), a valuation on F is a map V : Prop→ F+. A polarity-based
L -model is a tupleM= (F,V ). For every enriched formal context F= (P,R�,R^), any
valuation V on F extends to an interpretation map of L -formulas defined as follows:

V (p) = ([[p]],([p]))
V (>) = (A,A↑)
V (⊥) = (X↓,X)

V (ϕ ∧ψ) = ([[ϕ]]∩ [[ψ]],([[ϕ]]∩ [[ψ]])↑)
V (ϕ ∨ψ) = ((([ϕ])∩ ([ψ]))↓,([ϕ])∩ ([ψ]))

V (�ϕ) = (R(0)
� [([ϕ])],(R(0)

� [([ϕ])])↑)

V (^ϕ) = ((R(0)
^ [[[ϕ]]])↓,R(0)

^ [[[ϕ]]])

As we discussed in the previous lecture, the homomorphic extension of each valua-
tion gives rise to the recursive definition of the relations of “membership” 
 of objects
in categories, and of features “describing” categories (�) extended to all L -formulas,
and hence also to modal formulas. Hence, spelling out the definition of the homomor-
phic extension of a given assignment on the complex algebra of a polarity-based frame
according to the following conditions:

M,a 
 ϕ iff a ∈ [[ϕ]]M M,x� ϕ iff x ∈ ([ϕ])M

yields the following recursive definition of the “membership relation” 
 of objects in
categories, and of features “describing” categories (�) extended to the interpretation
of modal L -formulas:

M,a 
 �ϕ iff for all x ∈ X , ifM,x� ϕ , then aR�x
M,x� �ϕ iff for all a ∈ A, ifM,a 
 �ϕ , then aIx.
M,a 
 ^ϕ iff for all x ∈ X , ifM,x� ^ϕ , then aIx
M,x� ^ϕ iff for all a ∈ A, ifM,a 
 ϕ , then xR^a.

Thus, in each model, �ϕ is interpreted as the concept whose members are those objects
which are R�-related to every feature in the description of ϕ , and ^ϕ is interpreted as
the category described by those features which are R^-related to every member of
ϕ . To illustrate this with a concrete example, consider the enriched formal context
represented on the left hand side of the picture below (for simplicity’s sake R^ is not
represented, and the black and red dashed lines refer to elements that are both I-related
and R�-related ):

X
I,R�

A

x
p,�p

y
�p

z

a
p

b
p,�p

dc

f

⊥

(b,xy)
V (�p)

(ab,x)
V (p)

>

(cd,z)

(c,yz)

(bc,y)
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Finally, as to the interpretation of sequents:

M |= ϕ ` ψ iff [[ϕ]]⊆ [[ψ]] iff for all a ∈ A, ifM,a 
 ϕ, thenM,a 
 ψ

iff ([ψ])⊆ ([ϕ]) iff for all x ∈ X , ifM,x� ψ, thenM,x� ϕ .

A sequent ϕ ` ψ is valid on an enriched formal context F (in symbols: F |= ϕ ` ψ) if
M |= ϕ ` ψ for every modelM based on F.

3 Soundness and completeness
In the present section we prove the following

Proposition 1. The basic normal modal logic of formal concepts is sound and complete
w.r.t. the class of polarity-based frames.

3.1 Soundness
Proposition 2. For any polarity-based modelM,

1. ifM |= ϕ ` ψ , thenM |= �ϕ ` �ψ andM |= ^ϕ ` ^ψ;

2. M |=> ` �> andM |= ^⊥ ` ⊥;

3. M |= �ϕ ∧�ψ ` �(ϕ ∧ψ) andM |= ^(ϕ ∨ψ) ` ^ϕ ∨^ψ .

Proof. We only prove the statements relative to �-formulas. IfM |= ϕ `ψ , then [[ϕ]]⊆
[[ψ]] and ([ψ])⊆ ([ϕ]), which implies, by Lemma 1 (1), that

[[�ϕ]] = R(0)
� [([ϕ])]⊆ R(0)

� [([ψ])] = [[�ψ]],

which proves item (1). As to item (2), it is enough to show that A = [[>]] ⊆ [[�>]] =
R(0)
� [([>])] = R(0)

� [A↑]. By adjunction, it is enough to show that A↑ ⊆ R(1)
� [A]. Since

R� is I-compatible and A is Galois-stable, Lemma 4 (1) implies that R(1)
� [A] is Galois-

stable, hence it is enough to show that A↑ ⊆ (R(1)
� [A])↓↑. For this, it is enough to show

that (R(1)
� [A])↓ ⊆ A, which is certainly the case. As to item (3),

[[�(ϕ)∧�(ψ)]] = [[�(ϕ)]]∩ [[�(ψ)]] definition of [[·]] on ∧-formulas
= R(0)[([ϕ])]∩R(0)

� [([ψ])] definition of [[·]] on �-formulas
= R(0)

� [([ϕ])∪ ([ψ])] Lemma 1 (4)
= R(0)

� [(([ϕ])∪ ([ψ]))↓↑] Lemma 3
= R(0)

� [(([ϕ])↓∩ ([ψ])↓)↑] Lemma 1 (4)
= R(0)

� [([[ϕ]]∩ [[ψ]])↑] V (ϕ),V (ψ) formal concepts
= R(0)

� [([[ϕ ∧ψ]])↑] definition of [[·]] on ∧-formulas
= R(0)

� [([ϕ ∧ψ])] definition of ([·])
= [[�(ϕ ∧ψ)]]. definition of [[·]] on �-formulas

�

Exercise 5. Complete the proof of the proposition above.
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3.2 Completeness
The completeness of L can be proven via a standard canonical model construction. For
any lattice with normal operators (L,�,^), let FL = (PL,R�,R^) be defined as follows:
PL = (A,X , I) where A (resp. X) is the set of lattice filters (resp. ideals) of L, and aIx
iff a∩ x , ∅. Moreover, let R� ⊆ A×X and R^ ⊆ X×A be defined as follows:

aR�x iff �u ∈ a for some u ∈ L such that u ∈ x
xR^a iff ^u ∈ x for some u ∈ L such that u ∈ a.

In what follows, for any a ∈ A and x ∈ X , we let

�x := {�u ∈ L | u ∈ x} �−1a := {u ∈ L | �u ∈ a}
^a := {^u ∈ L | u ∈ a} ^−1x := {u ∈ L | ^u ∈ x}.

Lemma 6. For FL = (PL,R�,R^) as above, and any a ∈ A and x ∈ X,

1. R(0)
� [x] = {b ∈ A | b∩�x , ∅} and R(0)

^ [a] = {y ∈ X | y∩^a , ∅};

2. R(1)
� [a] = {y ∈ X | y∩�−1a , ∅} and R(1)

^ [x] = {b ∈ A | b∩^−1x , ∅}.

3. > ∈ �−1a , ∅ and ⊥ ∈ ^−1x , ∅.

Exercise 6. Prove Lemma 6. Hint for item (3): use that �>=> and ^⊥=⊥.

Lemma 7. For FL as above, and any a ∈ A and x ∈ X,

1. (R(0)
� [x])↑ = {y ∈ X | �x⊆ y} and (R(0)

^ [a])↓ = {b ∈ A | ^a⊆ b};

2. (R(1)
� [a])↓ = {b ∈ A | �−1a⊆ b} and (R(1)

^ [x])↓ = {y ∈ X | ^−1x⊆ y};

3. (R(0)
� [x])↑↓ = {b ∈ A | b∩�x , ∅}= R(0)

� [x] and (R(0)
^ [a])↓↑ = {y ∈ X | y∩^a ,

∅}= R(0)
^ [a];

4. (R(1)
� [a])↓↑ = {y ∈ X | y∩�−1a , ∅} = R(1)

� [a] and (R(1)
^ [x])↑↓ = {b ∈ A | b∩

^−1x , ∅}= R(1)
^ [x].

Proof. We only sketch the proof of the identities about R�. Items (1) and (2) readily
follow from Lemma 6 (1) and (2). As to items (3) and (4), from the previous items it
immediately follows that (R(0)

� [x])↑↓ = {b ∈ A | d�xe∩ b , ∅} and (R(1)
� [a])↓↑ = {y ∈

X | b�−1ac∩ y , ∅}, where d�xe and b�−1ac respectively denote the ideal generated
by �x and the filter generated by �−1a. Then, using the monotonicity of �, and that any
x ∈ X is closed under finite joins and any b ∈ A is upward-closed, one can show that
{b∈A | d�xe∩b,∅}= {b∈A |�x∩b,∅}=R(0)

� [x], and using the meet-preservation
of �, one can show that {y ∈ X | b�−1ac∩ y , ∅}= {y ∈ X | �−1a∩ y , ∅}= R(1)

� [a],
as required. Notice that the last equality holds for every a ∈ A under the assumption
that �−1a , ∅, which, by Lemma 6 (3), is guaranteed by � being normal. �

Exercise 7. Complete the proof of the lemma above.
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Items (3) and (4) of the lemma above immediately imply that:

Corollary 1. FL is an enriched formal context (cf. Definition 2).

Lemma 8. For FL as above, and any a ∈ A and x ∈ X,

1. If x is the ideal generated by some u ∈ L, then R(0)
� [x] = {a ∈ A | �u ∈ a}.

2. If a is the filter generated by some u ∈ L, then R(0)
^ [a] = {x ∈ X | ^u ∈ x}.

Proof. By Lemma 6, aR�x iff a ∈ R(0)
� [x] iff a∩�x , ∅. By assumption, x is the ideal

generated by u, hence u is the greatest element of x; so the monotonicity of � implies
that �u is the greatest element of �x. Since a is a filter, and hence is upward-closed,
a∩�x , ∅ is equivalent to �u ∈ a, which completes the proof. �

Exercise 8. Complete the proof of the lemma above.

The canonical enriched formal context is defined by instantiating the construction
above to the Lindembaum-Tarski algebra of L. In this case, let V be the valuation such
that [[p]] (resp. ([p])) is the set of the filters (resp. ideals) to which p belongs, and let
M= (FL,V ) be the canonical model. Then the following holds forM:

Lemma 9 (Truth lemma). For every ϕ ∈L ,

M,a 
 ϕ iff ϕ ∈ a and M,x� ϕ iff ϕ ∈ x.

Proof. By induction on ϕ . We only show the inductive step for ϕ := �σ .

M,a 
 �σ

iff a ∈ R(0)
� [([σ ])] definition of [[�σ ]]

iff a ∈ R(0)
� [{x | σ ∈ x}] induction hypothesis

iff for all x ∈ X , if σ ∈ x then a∩�x , ∅ definition of R�
iff a∩�dσe , ∅ dσe is the smallest x ∈ X s.t. σ ∈ x
iff �σ ∈ a. a upward-closed, and �σ is the greatest el. in �dσe

M,x� �σ

iff x ∈ ([�σ ])
iff x ∈ [[�σ ]]↑

iff x ∈ ({a ∈ A | �σ ∈ a})↑ proof above
iff for all a ∈ A, if �σ ∈ a then x∩a , ∅
iff x∩b�σc , ∅ b�σc is the smallest a ∈ A s.t. �σ ∈ a
iff �σ ∈ x. x downward-closed, and �σ is the smallest el. in b�σc

�

Exercise 9. Complete the proof of the truth lemma.

Proposition 3 (Completeness). If ϕ ` ψ is an L -sequent which is not derivable in L,
thenM 6|= ϕ ` ψ .
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Proof. If the L -sequent ϕ ` ψ is not derivable in L, then a∩ x = ∅, where a denotes
the filter in the Lindenbaum-Tarski algebra generated by ϕ and x denotes the ideal in
the Lindenbaum-Tarski algebra generated by ψ . Then the Truth lemma implies that
a ∈ [[ϕ]] and a < [[ψ]], hence [[ϕ]] * [[ψ]], i.e.M 6|= ϕ ` ψ , as required. �
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