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Abstract

In this lecture, we discuss how formal contexts can be seen as (sound and com-
plete) relational models of a basic propositional logic of categories and concepts.

1 Polarities as models for the basic lattice logic

The discussion in the previous classes justifies the proposal that complete lattices are
the most fundamental structures in which categories and concepts can be formalized.
In this section, we start by introducing the most basic logic naturally arising from
complete lattices.

Basic logic and informal understanding. Let Prop be a (countable or finite) set of
atomic category-labels. The language .Z of the basic propositional logic of formal
concepts is

p=L[T[plore|oVe

where p € Prop. Clearly, the logical signature of this language matches the algebraic
signature of the complex algebra of any formal context P. Hence, formulas in this
language can be interpreted as formal concepts of P. If the formal context P is re-
garded as the abstract representation of a database, atomic propositions p € Prop can
be understood as atomic labels (or names) for concepts, appropriate to the nature of
the database. For instance, if the database consists of music albums and their features
(e.g. names of performers, types of musical instruments, number of bits per minute
etc), then the atomic propositions can stand for names of music genres (e.g. jazz, rock,
rap); likewise, if the database consists of movies and their features (e.g. names of di-
rectors or performers, duration, presence of special effects, presence of costumes, pres-
ence of shooting scenes, etc), then the atomic propositions can stand for movie genres
(e.g. western, drama, horror); if the database consists of goods on sale in a supermarket
and their features (e.g. capacity of packages, presence of additives, presence of or-
ganic certification, etc) then the conceptual labels can stand for supermarket categories
(e.g. detergents, dairies, spices); if the database consists of the patients in a hospital
and their symptoms (e.g. fever, jaundice, vertigos, etc), then the atomic propositions



can stand for diseases (e.g. pneumonia, hepatitis, diabetes). Compound formulas ¢ A y
and @ V y respectively denote the greatest common subconcept and the smallest com-
mon superconcept of ¢ and y. The basic, or minimal £-logic is a set L of sequents
¢ F v (which intuitively read “¢ is a subconcept of ) with @, ¥ € £, containing the
following axioms:

e Sequents for propositional connectives:

rEp, 1L+p, pET,
pPEpVag, q-pVag, PAqE p, PAgFq,

and closed under the following inference rules:

o-x xtw oty rFe xFy ol x yhy
oy o(x/p)Fw(x/p) AEoNY oVYEy

By an .Z-logic we understand any extension of L with .Z-axioms ¢ - .

Interpretation in formal contexts. For any polarity P = (A,X,I) a valuation on P
isamap V : Prop — P*. An Z-model is a tuple M = (P, V). For every atomic cate-
gory label p € Prop, we let [[p] := [V (p)] (resp. ([p)) := (V(p)])) denote the extension
(resp. the intension) of the interpretation of p in M. The elements of [[p] are the mem-
bers of concept p in M; the elements of ([p]) describe concept p in M. Alternatively,
we write:

M,arp iff a€[plu
M,x>p iff x€(p)u

and we read M, a I p as “object a is a member of category p”, and M, x > p as “feature
x describes category p”.

Let us illustrate this definition with a concrete example. Consider the polarity P =
(A,X,I), representing a ‘database’ of theatrical plays the set of objects of which is
A :={a,b,c}, where a is A Midsummer Night's Dream, b is King Lear, and c is Julius
Caesar, while its set of features is X := {x,y,z}, where x is ‘no happy end’, y is ‘some
characters are real historical figures’, and z is ‘two characters fall in love with each
other’. The following picture represents P and its associated concept lattice P

(abc, )
x y z (be,x)
X
I AN
A (a,2)
a b C (C,)Cy)
(2,xyz)



Let Prop := {r,d,h} be the set of atomic concept-variables, where r stands for ‘ro-
mantic comedy’, d for ‘drama’ and 4 for ‘historical drama’. Consider the assignment
V : Prop — P which maps r to (a,z), d to (bc,x) and h to (c,xy). Then, for every
p € Prop := {r,d, h}, the clauses

M,awrp iff a€[plu
M,x>p iff x€(p)u

instantiate as shown in the picture below:

(abc, )
%Ch i}l 2 (be,x)
V(d)
I V(r)
V(h (a,2)
a b c (c,xy)
r d dh
(@,xyz2)

Interpreting arbitrary formulas. As usual, the valuation V can be homomorphi-
cally extended to an interpretation map of #-formulas, also denoted V, defined as
follows:

Vi) = (Ir].(r))

V(T) = (A,AD

VL) = (xX4,X)
Viery) = ([eln[vl, ([el N lw)h)
Vievy) = (((e)n(w))%, (o) N (w)

Hence, in each model, T is interpreted as the concept generated by the set A of all
objects, i.e. the widest concept and hence the one with the laxest (possibly empty)
description; L is interpreted as the category generated by the set X of all features,
i.e. the smallest category and hence the one with the most restrictive description and
possibly empty extension; ¢ A y is interpreted as the semantic category determined by
the intersection of the extensions of ¢ and y (hence, the description of ¢ A y certainly
includes ([@]) U ([y]) but can be strictly larger, as shown below). Likewise, @ V ¥ is
interpreted as the semantic category determined by the intersection of the intensions of
¢ and v (hence, it is always the case that [@] U [y]] C [¢ V y] but this inclusion can
be strict, as we will show below).

The homomorphic extension of each valuation gives rise to the recursive definition
of the relations of “membership” I of objects in categories, and of features “describing”
categories (>) extended to all .Z-formulas. Before giving the formal definition, let us
illustrate this definition in the context of our example. Since the assignment V maps r
to (a,z), and / to (c,xy), we can compute the interpretation of 4V r induced by V as
follows:

V(hvr)=V(h)VV(r) = (a,z)V(c,xy) = (abc, ).



This translates into the possibility of extending the “membership” and “description”
relations IF and > to &V r as illustrated in the following picture:

V(hVr
(abc, 2
dh h r
X y z (be,x)
X V(d)
1 V(r)
A V(h) (a,2)
a b ¢ (¢, xy)
r d dh
hVr hVr hVr
(2,xyz)

Notice that M, b I hV r, however, M, b ¥ h and M, b I r. Likewise, reasoning anal-
ogously, one shows that V(d Ar) = (@,xyz), and hence M,y - d A r, however, M,y # d
and M,y # r.

In general, spelling out the definition of the homomorphic extension of a given
assignment on the concept lattice of a polarity according to the following conditions:

M,ar @ iff ac[o]u
M,x=¢ iff x€ (@)

yields the following recursive definition of the “membership relation” I of objects in
categories, and of features “describing” categories (>-) extended to all .Z-formulas:

M,a T always
M, x> T iff alxforallaeA
M,x > L always
M,a - L iff  alxforallx € X

M,aroAy iff M,at ¢ and M,a - y
M,x > @Ay iff foralla€cA,if M,alr @ Ay, then alx
M,x>o@Vy iff M,x>¢@and M,x >y
M,ar@Vvy iff forallxecX,if M,x > ¢V y,then alx

Finally, as to the interpretation of sequents:

MEoerFy iff [o]Cy] iff forallacA,if M,ar @, then M,alr y
iff (y]) C (o)) iff forallxeX,if M,x > y, then M,x > @.
A sequent @ b y is valid in a formal context P (in symbols: P = ¢ - w)if M=o+ v
for every model M based on P.
Exercise 1 (Soundess). Verify that the axioms and rules of the basic logic of formal

concepts are valid in any formal context. Conclude that the basic logic of formal
concepts is sound w.r.t. the class of formal contexts.

Exercise 2 (Failure of distributive laws). Verify that, if M = (P,V) is the model de-
scribed above, then

MEAA (M) (dAANR)NV (dAr) and ME(WVA)N(RNVF)ERY (rAd).



2 Completeness

The completeness of L can be proven via a standard canonical model construction. For
any lattice L, let P, := (A, X, 1) where A (resp. X) is the set of lattice filters (resp. ideals)
of L, and alx iff aNx # @. The canonical formal context is defined by instantiating the
construction above to the Lindenbaum-Tarski algebra of L (which we also denote L).
In this case, let V be the canonical valuation, i.e. the one such that [[p]] (resp. (p)) is
the set of the filters (resp. ideals) of L to which p belongs, and let M = (P, V) be the
canonical model.

Exercise 3. Verify that if [p]] :={a € A | p € a} and (p)) := {x € X | p € x} for every
p € Prop, then [p]" = ([p]) and ([p))* = [[p]. Deduce that V is well defined.

Then the following holds for M:

Lemma 1 (Truth lemma). For every ¢ € %,
1. Myjavr @ iffo €a;
2. Myx>o@iffpex

Proof. By induction on @. If ¢ := p € Prop the statement follows by the definition of
canonical valuation.

If ¢ := L then L € x for any ideal x, and moreover, by definition of >, if M
is any (polarity-based) model, M, x > L for any x € X, so the required equivalence
is verified. By definition, M is any (polarity-based) model, M,a + L iff alx for any
x € X. By the definition of [ in Py, this is equivalent to stating that the filter a has
nonempty intersection with every ideal of L, or equivalently, with the smallest of them,
ie.an{l} # @,iff L € a, as required.

As to the inductive step for ¢ := oV &,

M,x>=oVE
iff M,x>o and M,x = & definition of > for VV-formulas
iff occexandex induction hypothesis
iff ovéex x is an ideal
M,aroVE
iff alxforanyxeXstMx>=oVE definition of I+ for V-formulas
iff anx# @ foranyideal xs.t. 6\VE €x proof above
iff an(ové)l+o (oVE)| is the smallest ideal xs.t. oV E € x
iff ovéea
The remaining cases (¢ := T and @ := 6 A &) are left to the reader. O

Exercise 4. Complete the proof of the truth lemma.

Proposition 1 (Completeness). If ¢ - y is an £ -sequent which is not derivable in L,
then ML [ @ - .



Proof. 1f the £-sequent ¢ - y is not derivable in L, then a N x = @, where a denotes
the filter in the Lindenbaum-Tarski algebra generated by ¢ and x denotes the ideal in
the Lindenbaum-Tarski algebra generated by y. Then the Truth Lemma implies that
a € [[@] and a ¢ [y]], hence [@] & [v], i.e. M [~ ¢ - v, as required. i



