Logical foundations of categorization theory Handout 5

Fei Liang and Alessandra Palmigiano

July 29, 2021

1 Composition of relations on polarities

In what follows, we fix two sets A and X, and use a, b (resp. x, y) for elements of A (resp. X), and B, C, A_j (resp. Y, W, X_j) for subsets of A (resp. of X) throughout this section. For any relation $S \subseteq U \times W$, let

$$S^{(1)}[U'] := \{ w \mid \forall u(u \in U' \Rightarrow uSw) \} \qquad S^{(0)}[W'] := \{ u \mid \forall w(w \in W' \Rightarrow uSw) \}.$$

Let us recall that the standard composition of $R, T \subseteq S \times S$ is

$$R \circ T := \{(u, w) \mid (u, v) \in R \text{ and } (v, w) \in T \text{ for some } v \in S\}.$$

Definition 1. For any formal context $\mathbb{P} = (A, X, I)$,

1. for all relations $R, T \subseteq X \times A$, the I-composition $R;_I T \subseteq X \times A$ is such that, for any $a \in A$ and $x \in X$,

$$(R;_{I}T)^{(0)}[a] = R^{(0)}[I^{(0)}[T^{(0)}[a]]], \quad i.e. \quad x(R;_{I}T)a \quad iff \qquad x \in R^{(0)}[I^{(0)}[T^{(0)}[a]];$$

2. *for all relations* $R, T \subseteq A \times X$ *, the* I-composition R; $_I T \subseteq A \times X$ *is such that, for any* $a \in A$ *and* $x \in X$ *,*

$$(R;_{I}T)^{(0)}[x] = R^{(0)}[I^{(1)}[T^{(0)}[x]], \quad i.e. \quad a(R;_{I}T)x \quad iff \qquad a \in R^{(0)}[I^{(1)}[T^{(0)}[x]]$$

When the context is fixed and clear, we will simplify notation and write e.g. R;T in stead of $R;_I T$. In these cases, we will also refer to I-composition as 'composition'.

Exercise 1. If $\mathbb{P} = (A, X, I)$ is a formal context, then

1. for any I-compatible relations $R, T \subseteq X \times A$ *and any* $a \in A$ *and* $x \in X$ *,*

$$x(R;T)a$$
 iff $(R;T)^{(1)}[x] = T^{(1)}[I^{(1)}[R^{(1)}[x]]];$

2. *for any I-compatible relations* $R, T \subseteq X \times A$ *and any* $a \in A$ *and* $x \in X$ *,*

$$a(R;T)x$$
 iff $(R;T)^{(1)}[a] = T^{(1)}[I^{(0)}[R^{(1)}[a]]].$

Exercise 2. Let $\mathbb{P} = (A, X, I)$ be a formal context. If $R, T \subseteq X \times A$ (resp. $R, T \subseteq A \times X$) and R is I-compatible, then so is R; T.

Exercise 3. Let $\mathbb{P} = (A, X, I)$ be a formal context.

- 1. If $R, T, U \subseteq X \times A$ are *I*-compatible, then (R; T); U = R; (T; U).
- 2. If $R, T, U \subseteq A \times X$ are *I*-compatible, then (R;T); U = R; (T;U);

2 Lifting relations

Throughout this section, for every set *S*, we let $\Delta_S := \{(s,s) \mid s \in S\}$, and we typically drop the subscript when it does not cause ambiguities. Hence we write e.g. $\Delta^c = \{(s,s') \mid s, s' \in S \text{ and } s \neq s'\}$. We let S_A and S_X be copies of *S*, and for every $P \subseteq S$, we let $P_A \subseteq S_A$ and $P_X \subseteq S_X$ denote the corresponding copies of *P* in S_A and S_X , respectively. Then P_X^c (resp. P_A^c) stands both for $(P^c)_X$ (resp. $(P^c)_A$) and $(P_X)^c$ (resp. $(P_A)^c$). For the sake of a more manageable notation, we will use *a* and *b* (resp. *x* and *y*) to indicate both elements of *A* (resp. *X*) and their corresponding elements in S_A (resp. S_X), relying on the types of the relations for disambiguation.

Definition 2. *For every* $R \subseteq S \times S$ *, we let*

- 1. $I_R \subseteq S_A \times S_X$ such that $aI_R x$ iff aRx;
- 2. $J_R \subseteq S_X \times S_A$ such that xJ_Ra iff xRa.

Exercise 4. For any set S we let $\mathbb{P}_S := (S_A, S_X, I_{\Delta^c})$. Prove that $\mathbb{P}_S^+ \cong \mathscr{P}(S)$. Hint: define $h : \mathscr{P}(S) \to \mathbb{P}_S^+$ as the assignment $P \mapsto (P_A, P_X^c)$.

Exercise 5. For all $R, T \subseteq S \times S$,

- 1. $I_{(R \circ T)^c} = I_{R^c}; I_{T^c}.$
- 2. $J_{(R \circ T)^c} = J_{R^c}; J_{T^c}.$

Exercise 6. For any Kripke frame $\mathbb{X} = (S, R)$, we let $\mathbb{F}_{\mathbb{X}} := (\mathbb{P}_S, I_{R^c}, J_{R^c})$ where $\mathbb{P}_S = (S_A, S_X, I_{\Delta^c})$ is defined as above. Show that $\mathbb{F}_{\mathbb{X}}$ is an enriched formal context. Hint: the relations $I_{R^c} \subseteq S_A \times S_X$ and $J_{R^c} \subseteq S_X \times S_A$ are trivially I_{Δ^c} -compatible.

Definition 3. A relation $R \subseteq S \times S$ is sub-delta if $R = \{(z, z) \mid z \in Z\}$ for some $Z \subseteq S$, and is dense if $\forall s \forall t [sRt \Rightarrow \exists u(sRu \& uRt)]$.

Exercise 7. For any Kripke frame $\mathbb{X} = (S, R)$,

- 1. *R* is reflexive iff $I_{R^c} \subseteq I_{\Delta^c}$ iff $J_{R^c}^{-1} \subseteq I_{\Delta^c}$.
- 2. *R* is transitive iff $I_{R^c} \subseteq I_{R^c}$; I_{R^c} iff $J_{R^c} \subseteq J_{R^c}$; J_{R^c} .
- 3. *R* is symmetric iff $I_{R^c} = J_{R^c}^{-1}$ iff $J_{R^c} = I_{R^c}^{-1}$.
- 4. *R* is sub-delta iff $I_{\Delta^c} \subseteq I_{R^c}$ iff $I_{\Delta^c} \subseteq J_{R^c}^{-1}$.

5. *R* is dense iff I_{R^c} ; $I_{R^c} \subseteq I_{R^c}$ iff J_{R^c} ; $J_{R^c} \subseteq J_{R^c}$.

Definition 4. For any polarity $\mathbb{P} = (A, X, I)$, a relation $R \subseteq A \times X$ (resp. $T \subseteq X \times A$) is

reflexive iff $R \subseteq I$ (resp. iff $T^{-1} \subseteq I$) *transitive* iff $R \subseteq R; R$ (resp. iff $T \subseteq T; T$) *subdelta* iff $I \subseteq R$ (resp. iff $I \subseteq T^{-1}$) *dense* iff $R; R \subseteq R$ (resp. iff $T; T \subseteq T$).

3 Exercises from Lecture **5**

Exercise 8. *Propose an informal understanding, along the lines in Section 2 of Lecture 5, of the following interpretation clauses:*

- *1.* $\mathbb{M}, x \succ \Box \varphi$ *iff for all* $a \in A$, *if* $\mathbb{M}, a \Vdash \Box \varphi$, *then aIx.*
- 2. $\mathbb{M}, a \Vdash \Diamond \varphi$ iff for all $x \in X$, if $\mathbb{M}, x \succ \Diamond \varphi$, then alx
- *3.* $\mathbb{M}, x \succ \Diamond \varphi$ *iff for all* $a \in A$, *if* $\mathbb{M}, a \Vdash \varphi$, *then* $xR_{\Diamond}a$.

Exercise 9. *Prove that for every polarity-based frame* $\mathbb{F} = (\mathbb{P}, \mathbb{R}_{\Box})$ *,*

$$\mathbb{F} \models \Box p \vdash p \quad iff \quad \forall a \forall x (aR_{\Box}x \Rightarrow aIx).$$

Hint: from right to left, fix a valuation V on \mathbb{P}^+ , and show that, for every $a \in A$, if $a \in [\![\Box p]\!]_V$ then $a \in [\![p]\!]_V$; for the converse direction, assume that $aR_{\Box}x$ but not aIx for some $a \in A$ and $x \in X$, and find an assignment V on \mathbb{P}^+ such that $\mathbb{F} \not\models \Box p \vdash p$.

Exercise 10. *Prove that for every polarity-based frame* $\mathbb{F} = (\mathbb{P}, R_{\Box})$ *,*

$$\mathbb{F} \models \Box p \vdash \Box \Box p \quad iff \quad R_{\Box} \subseteq R_{\Box} ;_{I} R_{\Box}$$

Exercise 11. *Prove that for every polarity-based frame* $\mathbb{F} = (\mathbb{P}, R_{\Box})$ *,*

 $\mathbb{F} \models p \vdash \Box p \quad iff \quad \forall a \forall x (aIx \Rightarrow aR_{\Box}x).$

Hint: follow a similar strategy as Exercise 2.

Exercise 12. *Prove that, for any enriched formal context* $\mathbb{F} = (\mathbb{P}, R_{\Box}, R_{\Diamond})$ *:*

$$I. \quad \mathbb{F} \models \Box \varphi \vdash \Diamond \varphi \quad iff \quad R_{\Box}; R_{\blacksquare} \subseteq I.$$

$$2. \quad \mathbb{F} \models \Box \varphi \vdash \varphi \quad iff \quad R_{\Box} \subseteq I.$$

$$3. \quad \mathbb{F} \models \varphi \vdash \Diamond \varphi \quad iff \quad R_{\blacksquare} \subseteq I.$$

$$4. \quad \mathbb{F} \models \Box \varphi \vdash \Box \Box \varphi \quad iff \quad R_{\Box} \subseteq R_{\Box}; R_{\Box}.$$

$$5. \quad \mathbb{F} \models \Diamond \Diamond \varphi \vdash \Diamond \varphi \quad iff \quad R_{\Diamond} \subseteq R_{\Diamond}; R_{\Diamond}.$$

$$6. \quad \mathbb{F} \models \varphi \vdash \Box \Diamond \varphi \quad iff \quad R_{\Diamond} \subseteq R_{\blacklozenge}.$$

7. $\mathbb{F} \models \Diamond \Box \varphi \vdash \varphi$ iff $R_{\blacklozenge} \subseteq R_{\Diamond}$. 8. $\mathbb{F} \models \varphi \vdash \Box \varphi$ iff $I \subseteq R_{\Box}$. 9. $\mathbb{F} \models \Diamond \varphi \vdash \varphi$ iff $I \subseteq R_{\blacksquare}$. 10. $\mathbb{F} \models \Box \Box \varphi \vdash \Box \varphi$ iff $R_{\Box}; R_{\Box} \subseteq R_{\Box}$. 11. $\mathbb{F} \models \Diamond \varphi \vdash \Diamond \Diamond \varphi$ iff $R_{\Diamond}; R_{\Diamond} \subseteq R_{\Diamond}$. 12. $\mathbb{F} \models \Diamond \varphi \vdash \Box \varphi$ iff $I \subseteq R_{\blacksquare}; R_{\Box}$.