Logical foundations of categorization theory Handout 4

Fei Liang and Alessandra Palmigiano

July 29, 2021

1 Preliminaries

Definition 1 (Adjunction). *Let* $P = (X, \leq)$ *and* $Q = (Y, \leq)$ *be posets. The pair of maps* $(f: X \to Y; g: Y \to X)$ *is an* adjoint pair *if for every* $x \in X$, $y \in Y$,

$$f(x) \le y$$
 iff $x \le g(y)$.

In this case, f is the left or lower adjoint and g is the right, or upper adjoint, and we write: $f \dashv g$.

Exercise 1. Let $P = (X, \leq)$ and $Q = (Y, \leq)$ be posets, and the pair of maps $(f : X \rightarrow Y; g : Y \rightarrow X)$ be an adjoint pair. Prove that, for any $x \in X$,

- 1. $fg(x) \le x \le gf(x)$;
- 2. f, g are monotone. 1

Definition 2. For every $P = (X, \leq)$, $Q = (Y, \leq)$, a map $f : X \to Y$ preserves existing joins if for every $S \subseteq X$, if $\bigvee S$ exists in P, then $\bigvee f[S]$ exists in Q and $f(\bigvee S) = \bigvee f[S]$. A map $g : X \to Y$ preserves existing meets if for every $S \subseteq X$, if $\bigwedge S$ exists in P, then $\bigwedge g[S]$ exists in Q and $g(\bigwedge S) = \bigwedge g[S]$.

Exercise 2. Let $P = (X, \leq)$ and $Q = (Y, \leq)$ be posets, and let $f : X \to Y$ and $g : Y \to X$ be maps.

- 1. Prove that if $f \dashv g$ then then f preserves (existing) joins and g preserves (existing) meets.
- 2. Prove that if P is a complete lattice then the following are equivalent,
 - (a) f preserves (existing) joins;
 - (b) $f \dashv g$ for some $g: Y \rightarrow X$.

¹Let $P = (X, \leq)$ and $Q = (Y, \leq)$ be posets, a map $f: X \to Y$ is monotone if, for any $x, y \in X$, if $x \leq y$ then $f(x) \leq f(y)$.

Hint: for (a) implies (b), let $g(y) := \bigvee \{x \in X \mid f(x) \leq y\}$ for any $y \in Y$.

- 3. Deduce from the item above that if Q is a complete lattice then the following are equivalent,
 - (a) g preserves (existing) meets;
 - (b) $f \dashv g$ for some $f: X \to Y$.

Hint: for (a) implies (b), let $f(x) := \bigwedge \{ y \in Y \mid x \le g(y) \}$ *for any* $x \in X$.

2 Exercises from Lecture 4

- Exercise 3. Prove Lemma 1 of Lecture 4.
- Exercise 4. Complete the proof of Lemma 3 of Lecture 4.
- Exercise 5. Complete the proof of Lemma 4 of Lecture 4.
- Exercise 6. Complete the proof of Lemma 5 of Lecture 4.
- Exercise 7. Complete the proof of Proposition 2 of Lecture 4.
- Exercise 8. Prove Lemma 6 of Lecture 4.
- **Exercise 9.** Complete the proof of Lemma 7 of Lecture 4.
- **Exercise 10.** Complete the proof of Lemma 8 of Lecture 4.
- Exercise 11. Complete the proof of the truth lemma of Lecture 4.