
Logical foundations of categorization theory
Lecture 2

Fei Liang and Alessandra Palmigiano

July 26, 2021

Abstract

In the first part this lecture, we introduce the basic definitions and facts on
closure operators, closure systems and complete lattices; in the second part of the
lecture, we expand on properties of closure operators and their link with complete
lattices, in the form of Birkhoff’s representation theorem for complete lattices as
concept lattices arising from formal contexts.

1 Background on mathematical approach
Closure operators and complete lattices

Definition 1. If (P,≤) is a partially ordered set, a map c : P→ P is a closure operator
on (P,≤) if, for all x,y in P:

(a) x≤ c(x) (inflationary);

(b) if x≤ y then c(x)≤ c(y) (monotone);

(c) c(c(x)) = c(x) (idempotent).

If c is a closure operator on (P,≤), let Cc := {x ∈ P | x = c(x)}.

Definition 2. A bounded lattice is a partially ordered set (L,≤) such that:

(a) there exists an element > ∈ L such that a≤> for every a ∈ L;

(b) there exists an element ⊥ ∈ L such that ⊥≤ a for every a ∈ L;

(c) for any a,b ∈ L there exists an element a∧ b such that a∧ b ≤ a and a∧ b ≤ b
and for every c ∈ L, if c≤ a and c≤ b then c≤ a∧b;

(d) for any a,b ∈ L there exists an element a∨ b such that a ≤ a∨ b and b ≤ a∨ b
and for every c ∈ L, if a≤ c and b≤ c then a∨b≤ c.

A lattice is complete if
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(a’) for every X ⊆ L there exists an element
∧

X such that
∧

X ≤ x for every x ∈ X
and for every c ∈ L, if c ≤ x for every x ∈ X then c ≤

∧
X (

∧
X is “the greatest

lower bound of X”);

(b’) for every X ⊆ L there exists an element
∨

X such that x ≤
∨

X for every x ∈ X
and for every c∈ L, if x≤ c for every x∈ X then

∨
X ≤ c (

∨
X is “the least upper

bound of X”).

A partial order for which (a) and (c) hold is a meet-semilattice; a partial order for
which (b) and (d) hold is a join-semilattice.

A partial order for which (c’) hold is a complete meet-semilattice; a partial order
for which (d’) holds is a complete join-semilattice.

Exercise 1. For any partial order (L,≤),

1. Prove that if X ⊆ Y ⊆ L then
∨

X ≤
∨

Y and
∧

Y ≤
∧

X whenever they exist;

2. Deduce that if > exists then >=
∧
∅ and if ⊥ exists then ⊥=

∨
∅.

Exercise 2. Prove that if (L,≤) is a complete meet-semilattice, then (L,≤) is a com-
plete lattice. (Hint: Let X ⊆ L; to show that

∨
X exists, let Y := {a ∈ L | ∀x(x ∈ X ⇒

x≤ a)}...)

Closure operators on complete lattices

Fact 1. If c is a closure operator on a complete lattice (L,≤), and X ⊆ Cc := {x ∈ P |
x = c(x)}, then

∧
X ∈ Cc.

Proof. Clearly
∧

X ≤ c(
∧

X); for the converse inequality, by definition we have
∧

X ≤
x for every x ∈ X , which implies that c(

∧
X) ≤ c(x) for every x ∈ X , hence c(

∧
X) ≤∧

{c(x) | x ∈ X}=
∧
{x | x ∈ X}=

∧
X , as required. �

Fact 2. In a complete lattice (L,≤), if C ⊆ L then the map cC : L→ L defined by the
assignment a 7→

∧
{x ∈ C | a≤ x} is a closure operator.

Proof. By definition, a is a lower bound of {x ∈ C | a≤ x}, and so a≤
∧
{x ∈ C | a≤

x} = cC (a) for every a ∈ L. If a,b ∈ L and a ≤ b, then by transitivity {x ∈ C | b ≤
x} ⊆ {x ∈ C | a≤ x}. Hence, c(a), which is a lower bound of {x ∈ C | a≤ x}, is also a
lower bound of {x∈C | b≤ x}, and hence c(a)≤

∧
{x∈C | b≤ x}= c(b), as required.

Finally, let us show that cC (a) = cC (cC (a)). From a ≤ cC (a) and monotonicity that
we have just proven we get cC (a) ≤ cC (cC (a)). To prove the converse inequality
cC (cC (a))≤ cC (a), by definition, it is enough to show that cC (cC (a)) is a lower bound
of {x ∈ C | a ≤ x}. Let x ∈ C such that a ≤ x; then cC (a) =

∧
{x ∈ C | a ≤ x} ≤ x;

hence by monotonicity, cC (cC (a)) ≤ cC (x). Hence to finish the proof it is enough
to show that cC (x) = x. This immediately follows from the fact that x ∈ C and ≤ is
reflexive. �

Definition 3. If (L,≤) is a complete lattice, a closure system of (L,≤) is a subset
C ⊆ L such that, for every X ⊆ L, if X ⊆ C then

∧
X ∈ C .
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Closure systems on a complete lattice (L,≤) is are exactly the complete sub meet-
semilattices of (L,≤), and hence they are complete lattices by the previous exercise.

Exercise 3. Prove that, if C ⊆ L is a closure system of (L,≤), then for every Y ⊆ C ,∨
C Y = cC (

∨
Y ).

Proposition 1. If (L,≤) is a complete lattice and

1. c is a closure operator on (L,≤) then c = cCc .

2. C ⊆ L is a closure system of (L,≤) , then C = CcC
.

Proof. 1. Let a ∈ L. Since c is a closure operator, c(c(a)) = c(a), hence c(a) ∈ Cc =
{x ∈ L | c(x) = x}, and a ≤ c(a), so c(a) ∈ {x ∈ Cc | a ≤ x}, hence cCc(a) =

∧
{x ∈

Cc | a≤ x} ≤ c(a); to prove the converse inequality c(a)≤ cCc(a) =
∧
{x | c(x) = x and

a ≤ x}, it is enough to show that c(a) is a lower bound for {x | c(x) = x and a ≤ x}.
Indeed, if x is such that c(x) = x and a≤ x, then c(a)≤ c(x) = x, as required.

2. By definition, CcC
= {x ∈ L | cC (x) = x} = {x ∈ L | x =

∧
{y ∈ C | x ≤ y}}.

Since C is closed under taking the meet of any of its subsets,
∧
{y ∈ C | x ≤ y} ∈ C ,

and hence CcC
⊆ C . To prove the converse inclusion, let us show that if x ∈ C , then

x =
∧
{y ∈ C | x≤ y}. Indeed, by definition, x is a lower bound of {y ∈ C | x≤ y}, and

hence x ≤
∧
{y ∈ C | x ≤ y}. On the other hand, since x ∈ C and x ≤ x, we also have

that x∈ {y∈C | x≤ y}, and since
∧
{y∈C | x≤ y} is a lower bound of {y∈C | x≤ y}

by definition, we also have
∧
{y ∈ C | x≤ y} ≤ x, as required. �

Hence, on any complete lattice (L,≤), there is a perfect correspondence between
closure operators on (L,≤) and closure systems of (L,≤).

Closure operators and Galois connections.

Definition 4. Let (P,≤) and (Q,�) be partial orders. A Galois connection is a pair of
maps B : P→ Q and I : Q→ P such that for every x ∈ P and every y ∈ Q,

x≤ Iy iff y� Bx.

Exercise 4. Prove that, in any Galois connection as above,

1. x≤ IBx and y≤ BIy;

2. x≤ x′ implies Bx′ � Bx, and y� y′ implies Iy′ ≤ Iy;

3. BIBx = Bx and IBIy = Iy.

Deduce from the previous items that for every Galois connection as above, IB is a
closure operator on (P,≤) and BI is a closure operator on (Q,�).
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2 Examples of closure operators
Example/Exercise 1. A topological space is a tuple (X ,τ) such that X is a set and
τ is a collection of subsets of X, called open sets, such that ∅,X ∈ τ and τ is closed
under finite intersection and arbitrary unions. Prove that the set Cτ := {Ac | A ∈ τ}
is a closure system. Then the map c : P(X)→P(X) defined by the assignment Y 7→⋂
{C ∈ Cτ | Y ⊆C} is a closure operator on (P(X),⊆). Moreover, Cτ is a complete

sub
⋂

-semilattice of the complete lattice (P(X),⊆), and for every collection of closed
subsets Y ⊆ Cτ , we have

∨
Cτ

Y = cCτ
(
⋃

Y ).

Example/Exercise 2. The Polish school in logic defines a logical system as a tuple
S = (Fm,`) such that Fm is the algebra of L -formulas over a given set Φ of propo-
sitional variables for a given algebraic signature L , and ` is a consequence relation
on Fm, i.e. `⊆P(Fm)×Fm such that for all ϕ,ψ ∈ Fm and all ∆,Γ⊆ Fm:

(a) if ϕ ∈ Γ, then Γ ` ϕ;

(b) if Γ ` ϕ and Γ⊆ ∆, then ∆ ` ϕ;

(c) if Γ ` ψ for every ψ ∈ ∆ and ∆ ` ϕ , then Γ ` ϕ .

For any logical system S as above, prove that the map c` : P(Fm)→P(Fm) defined
by the assignment Γ 7→ {ϕ | Γ ` ϕ} is a closure operator on (P(Fm),⊆), and its
associated closure system is Cc` = {Γ ⊆ Fm | ∀ϕ(Γ ` ϕ ⇒ ϕ ∈ Γ)}. Which set of
formulas is ⊥Cc`

?

Example/Exercise 3. A metric space is an ordered pair (X ,d) such that X is a set and
d : X×X → R such that for all x,y,z ∈M,

(a) d(x,y) = 0 iff x = y (identity of indiscernibles);

(b) d(x,y) = d(y,x) (symmetry);

(c) d(x,z)≤ d(x,y)+d(y,z) (subadditivity or triangle inequality).

Then d(x,y)≥ 0 for any x,y ∈M (prove it. Hint: if 2 ·d(x,y)≥ 0 then d(x,y)≥ 0). The
most important examples of metric spaces are Euclidean spaces where X = Rn and for
every p,q ∈ Rn,

d(p,q) :=
√

Σn
i=1(pi−qi)2

In a Euclidean space Rn, a subset Y ⊆ Rn is convex if for any p,q ∈ Y the segment
the extremes of which are p q is contained in Y . Prove that the set Conv(Rn) of the
convex sets of Rn is a closure system of (P(Rn),⊆), hence the map associating any
subset Y ⊆Rn with its convex hull (i.e. the smallest convex set containing Y ) is a closure
operator on (P(Rn),⊆).

Example/Exercise 4. A polarity or formal context is a triple P= (A,X , I) such that A
and X are sets and I ⊆ A×X. Every polarity induces the pair of maps

(·)↑ : P(A)→P(X) and (·)↓ : P(X)→P(A),

4



respectively defined by the assignments

B↑ := {x ∈ X | ∀a(a ∈ B⇒ aIx)} and Y ↓ := {a ∈ A | ∀x(x ∈ Y ⇒ aIx)}.

Show that for every B⊆ A and every Y ⊆ B,

B⊆ Y ↓ iff Y ⊆ B↑

i.e. form a Galois connection (cf. Definition 4), and hence induce the closure opera-
tors1 (·)↑↓ : P(A)→P(A) and (·)↓↑ : P(X)→P(X). Moreover, the fixed points
of these closure operators form complete sub-

⋂
-semilattices of P(A) and P(X) (and

hence complete lattices) respectively, which are dually isomorphic to each other via
the restrictions of the maps (·)↑ and (·)↓ (cf. Exercise 4.3).

This motivates the following

Definition 5. For every formal context P = (A,X , I), a formal concept of P is a pair
c= (B,Y ) such that B⊆A, Y ⊆X, and B↑=Y and Y ↓=B. The set B is the extension of
c, which we will sometimes denote [[c]], and Y is the intension of c, sometimes denoted
([c]). Let L(P) denote the set of the formal concepts of P. Then the concept lattice of P
is the complete lattice

P+ := (L(P),
∧
,
∨
),

where for every X ⊆ L(P),∧
X := (

⋂
c∈X

[[c]],(
⋂

c∈X
[[c]])↑) and

∨
X := ((

⋂
c∈X

([c]))↓,
⋂

c∈X
([c])).

Then clearly, >P+ :=
∧
∅ = (A,A↑) and ⊥P+ :=

∨
∅ = (X↓,X), and the partial order

underlying this lattice structure is defined as follows: for any c,d ∈ L(P),

c≤ d iff [[c]]⊆ [[d]] iff ([d])⊆ ([c]).

3 Birkhoff’s representation theorem of complete lattices
The following theorem, known as Birkhoff’s representation theorem of complete lat-
tices, is the order-theoretic foundation of Formal Concept Analysis.

Theorem 1. Any complete lattice L is isomorphic to the concept lattice P+ of some
formal context P.

Proof. If L= (L,≤) is a complete lattice, then let P := (L,L,≤). We want to show that
L is isomorphic to P+. For every a ∈ L, let us show the preliminary claim that

a↑↓ = {b ∈ L | b≤ a}.

Indeed by definition, a↑ = {x ∈ L | a≤ x}; then a↑↓ = {b ∈ L | ∀x(x ∈ a↑⇒ b≤ x)}=
{b ∈ L | ∀x(a ≤ x⇒ b ≤ x)}. Hence, by transitivity, if b ≤ a then, for every x ∈ L,

1When B = {a} (resp. Y = {x}) we write a↑↓ for {a}↑↓ (resp. x↓↑ for {x}↓↑).
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if a ≤ x then b ≤ x, which shows that {b ∈ L | b ≤ a} ⊆ a↑↓. To prove the converse
inclusion a↑↓ ⊆ {b ∈ L | b ≤ a}, we proceed by contraposition: if b < {b ∈ L | b ≤ a},
i.e. b � a then there exists an element of x ∈ a↑, namely x = a itself, such that b � x,
and hence b < a↑↓, which finishes the proof of the preliminary claim.

Let us define the map f : L→ P+ by the assignment a 7→ (a↑↓,a↑), and the map
g : P+→ L by the assignment ([[c]],([c])) 7→

∨
[[c]].

To show that f is surjective, let us show that for every c = ([[c]],([c])) ∈ P+,

c = f (g(c)).

For every c = ([[c]],([c])) ∈ P+,

f (g(c)) = f (
∨
[[c]]) = ((

∨
[[c]])↑↓,(

∨
[[c]])↑),

hence to finish the proof that f (g(c)) = c, it is enough to show that ([c]) = (
∨
[[c]])↑).

By definition, ([c]) = [[c]]↑, so we need to show that [[c]]↑ = (
∨
[[c]])↑.

[[c]]↑ = {y ∈ L | ∀a(a ∈ [[c]]⇒ a≤ y)} definition of [[c]]↑

= {y ∈ L |
∨
[[c]]≤ y}

∨
least upper bound

= (
∨
[[c]])↑ definition of (

∨
[[c]])↑

Let us show that f is an order-embedding, i.e. that for every a,b ∈ L,

a≤L b iff f (a)≤P+ f (b).

By definition, f (a) ≤P+ f (b) iff [[ f (a)]] = a↑↓ ⊆ b↑↓ = [[ f (b)]], so a ≤L b implies that
a↑↓ ⊆ b↑↓ since the composition of order-reversing maps (cf. Exercise 4.2) is order
preserving. For the converse implication, assume that a↑↓ ⊆ b↑↓; by the preliminary
claim, this is equivalent to {x ∈ L | x≤ a} ⊆ {x ∈ L | x≤ b}; hence a ∈ {x ∈ L | x≤ b},
i.e. a ≤ b, as required. Summing up, we have showed that f is an order-isomorphism
(i.e. a surjective order-embedding) between the complete lattices L and P+. Hence
these two lattices are isomorphic. �

Exercise 5. Prove that for the maps f and g defined in the proof above, a = g( f (a)).
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