Logical foundations of categorization theory Handout 2

Fei Liang and Alessandra Palmigiano

July 27, 2021

1 Order-theoretic notions

Definition 1 (Maximal and minimal elements). *Let* (P, \leq) *be a partially ordered set and let* $Q \subseteq P$. *Then:*

- (a) $a \in Q$ is a maximal element of Q if, for all $x \in P$, if $a \le x$ and $x \in Q$ then a = x;
- (b) $a \in Q$ is a minimal element of Q if, for all $x \in P$, if $x \le a$ and $x \in Q$ then a = x;
- (c) $a \in Q$ is the greatest (or maximum) element of Q if $x \le a$ for all $x \in Q$;
- (d) $a \in Q$ is the least (or minimum) element of Q if $a \le x$ for all $x \in Q$.

We denote the set of maximal elements of Q by MaxQ and the set of minimal elements of Q by MinQ.

Exercise 1. Prove that if $y \in Q$ is the maximum element of Q, then $MaxQ = \{y\}$; dually, if $y \in Q$ the minimum element of Q, then $MinQ = \{y\}$. Deduce that if the maximum (or minimum) element of Q exists, then it is unique.

Definition 2 (Upper bound and lower bound). *Let* (P, \leq) *be a partially ordered set and let* $Q \subseteq P$. *Then:*

- (a) $a \in P$ is an upper bound of Q if $x \le a$ for all $x \in Q$;
- (b) $a \in P$ is a lower bound of Q if $a \le x$ for all $x \in Q$;

The set of all upper bounds of Q is denoted by Q^u and the set of all lower bounds by Q^ℓ . If the minimum element (denoted by $\bigvee Q$) of Q^u exists, then $\bigvee Q$ is called the least upper bound (or supremum) of Q. Dually, if the maximum element (denoted by $\bigwedge Q$) of Q^ℓ exists, then $\bigwedge Q$ is called the greatest lower bound (or infimum) of Q.

Exercise 2. Give an example of a partially ordered set (P, \leq) and $Q \subseteq P$ in which $\bigvee Q \notin Q$ and an example of a partially ordered set (P, \leq) and $Q \subseteq P$ in which $\bigwedge Q \notin Q$.

2 Lattices and closure systems

Definition 3 (Bounded lattice). A lattice is a partially ordered set (L, \leq) such that:

- (a) the infimum $a \land b$ of the set $\{a,b\}$ exists for any $a,b \in L$;
- (b) the supremum $a \lor b$ of the set $\{a,b\}$ exists for any $a,b \in L$;
- (c) the maximum \top of L exists;
- (d) the minimum \perp of L exists.

Such a lattice is complete if

- (a') $\bigwedge X \in L$ exists for every $X \subseteq L$;
- (b') $\forall X \in L \text{ exists for every } X \subseteq L.$

A partial order for which (a) and (c) hold is a meet-semilattice; a partial order for which (b) and (d) hold is a join-semilattice. A partial order for which (a') hold is a complete meet-semilattice; a partial order for which (b') holds is a complete join-semilattice.

Exercise 3. For any partial order (P, \leq) ,

- 1. Prove that if $X \subseteq Y \subseteq P$ then $\bigvee X \subseteq \bigvee Y$ and $\bigwedge Y \subseteq \bigwedge X$ whenever they exist;
- 2. Deduce that if \top exists then $\top = \bigwedge \emptyset$ and if \bot exists then $\bot = \bigvee \emptyset$.

Exercise 4. Prove that if (L, \leq) is a complete meet-semilattice, then (L, \leq) is a complete lattice. Hint: Let $X \subseteq L$; to show that $\bigvee X$ exists, consider X^u (cf. Definition $\ref{eq:constraint}$).

Definition 4 (Closure system). *If* (L, \leq) *is a complete lattice, a* closure system *of* (L, \leq) *is a subset* $\mathscr{C} \subseteq L$ *such that, for every* $X \subseteq L$, *if* $X \subseteq \mathscr{C}$ *then* $\bigwedge X \in \mathscr{C}$.

Exercise 5. Let (L, \leq) be a complete lattice. Prove that $\top \in \mathscr{C}$ for any closure system of (L, \leq) .

Exercise 6. For any topological space (X, τ) , show that the set $\mathcal{C}_{\tau} := \{A^c \mid A \in \tau\}$ is a closure system, where A^c is the relative complement of A with respect to X.

Exercise 7. For any logical system \mathscr{S} , let the map $c_{\vdash} : \mathscr{P}(\mathbf{Fm}) \to \mathscr{P}(\mathbf{Fm})$ be defined by the assignment $\Gamma \mapsto \{\varphi \mid \Gamma \vdash \varphi\}$. Show that $\mathscr{C}_{c_{\vdash}} = \{\Gamma \subseteq \mathbf{Fm} \mid \forall \varphi (\Gamma \vdash \varphi \Rightarrow \varphi \in \Gamma)\}$ is a closure system. Which set of formulas is $\bot_{\mathscr{C}_{c_{\vdash}}}$?

Exercise 8. Let (L, \leq) be a complete lattice. Prove that, if $\mathscr{C} \subseteq L$ is a closure system of (L, \leq) , then for every $Y \subseteq \mathscr{C}$, $\bigvee_{\mathscr{C}} Y = c_{\mathscr{C}}(\bigvee Y)$, where the map $c_{\mathscr{C}} : L \to L$ is defined by the assignment $a \mapsto \bigwedge \{x \in \mathscr{C} \mid a \leq x\}$. (Notice that: $\bigvee_{\mathscr{C}} Y$ is the supremum of Y in \mathscr{C} (cf. Exercise 5) and $\bigvee Y$ is the supremum of Y in L.)

3 Birkhoff's representation theorem for complete lattices

Definition 5 (Homomorphism). *Let L and K be bounded lattices. A map f* : $L \rightarrow K$ *is said to be a* homomorphism (*or bounded lattice homomorphism*) *if*

- (a) for all $a, b \in L$, $f(a \wedge_L b) = f(a) \wedge_K f(b)$;
- (b) for all $a, b \in L, f(a \vee_L b) = f(a) \vee_K f(b)$;
- (c) $f(\top_L) = \top_K$;
- (d) $f(\perp_L) = \perp_K$.

If L and K are complete lattices, $f: L \to K$ is said to be a complete homomorphism if

- (a') for any set $X \subseteq L$, $f(\bigwedge_L X) = \bigwedge_K \{f(a) \mid a \in L\}$;
- (b') for any set $X \subseteq L$, $f(\bigvee_L X) = \bigvee_K \{f(a) \mid a \in L\}$.

f is said to be an isomorphism (or lattice isomorphism) if f is bijection.

Exercise 9. Let L and K be bounded lattices. Show that $f: L \to K$ is an isomorphism iff it is surjective and is an order-embedding. ¹

Definition 6. For every formal context $\mathbb{P} = (A, X, I)$, a formal concept of \mathbb{P} is a pair c = (B, Y) such that $B \subseteq A$, $Y \subseteq X$, and $B^{\uparrow} = Y$ and $Y^{\downarrow} = B$ (cf. see Definition Exercise/Example 4 in Lecture 2). The set B is the extension of c, which we will sometimes denote [[c]], and Y is the intension of c, sometimes denoted ([c]]. Let $L(\mathbb{P})$ denote the set of the formal concepts of \mathbb{P} . Then the concept lattice of \mathbb{P} is the complete lattice

$$\mathbb{P}^+:=(L(\mathbb{P}),\bigwedge,\bigvee),$$

where for every $\mathscr{X} \subseteq L(\mathbb{P})$,

$$\bigwedge \mathscr{X} := (\bigcap_{c \in \mathscr{X}} \llbracket c \rrbracket, (\bigcap_{c \in \mathscr{X}} \llbracket c \rrbracket)^{\uparrow}) \quad \text{ and } \quad \bigvee \mathscr{X} := ((\bigcap_{c \in \mathscr{X}} ([c]))^{\downarrow}, \bigcap_{c \in \mathscr{X}} ([c])).$$

and the partial order underlying this lattice structure is defined as follows: for any $c,d \in L(\mathbb{P})$,

$$c \leq d$$
 iff $[\![c]\!] \subseteq [\![d]\!]$ iff $(\![d]\!] \subseteq (\![c]\!]$.

Exercise 10. Prove that $\top^{\mathbb{P}^+} := \bigwedge \varnothing = (A, A^{\uparrow})$ and $\bot^{\mathbb{P}^+} := \bigvee \varnothing = (X^{\downarrow}, X)$.

Exercise 11. Compute the concept lattices associated with the polarities $\mathbb{P} = (A, X, I)$, such that $A = \{a, b, c\}, X = \{x, y, z\}$ and $I \subseteq A \times X$ in the following cases:

- (1) $I = \{(a,x), (b,y), (c,z)\};$
- (2) $I = \{(a,x), (b,x), (b,y), (c,y), (c,z)\};$
- (3) $I = \{(a,x), (a,y), (b,x), (b,z), (c,y), (c,z)\}.$

Exercise 12 (Birkhoff's representation theorem). *Complete the proof of Birkhoff's theorem in Lecture 2.*

¹Let (P, \leq) and (Q, \leq) be partially ordered sets. A map $f: P \to Q$ is an order-embedding if, for all $x, y \in P$, $x \leq y$ in P if and only if $f(x) \leq f(y)$ in Q.