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1 Order-theoretic notions
Definition 1 (Maximal and minimal elements). Let (P,≤) be a partially ordered set
and let Q⊆ P. Then:

(a) a ∈ Q is a maximal element of Q if, for all x ∈ P, if a≤ x and x ∈ Q then a = x;

(b) a ∈ Q is a minimal element of Q if, for all x ∈ P, if x≤ a and x ∈ Q then a = x;

(c) a ∈ Q is the greatest (or maximum) element of Q if x≤ a for all x ∈ Q;

(d) a ∈ Q is the least (or minimum) element of Q if a≤ x for all x ∈ Q.

We denote the set of maximal elements of Q by MaxQ and the set of minimal elements
of Q by MinQ.

Exercise 1. Prove that if y∈Q is the maximum element of Q, then MaxQ= {y}; dually,
if y ∈Q the minimum element of Q, then MinQ = {y}. Deduce that if the maximum (or
minimum) element of Q exists, then it is unique.

Definition 2 (Upper bound and lower bound). Let (P,≤) be a partially ordered set and
let Q⊆ P. Then:

(a) a ∈ P is an upper bound of Q if x≤ a for all x ∈ Q;

(b) a ∈ P is a lower bound of Q if a≤ x for all x ∈ Q;

The set of all upper bounds of Q is denoted by Qu and the set of all lower bounds by
Q`. If the minimum element (denoted by

∨
Q) of Qu exists, then

∨
Q is called the least

upper bound (or supremum) of Q. Dually, if the maximum element (denoted by
∧

Q) of
Q` exists, then

∧
Q is called the greatest lower bound (or infimum) of Q.

Exercise 2. Give an example of a partially ordered set (P,≤) and Q ⊆ P in which∨
Q <Q and an example of a partially ordered set (P,≤) and Q⊆ P in which

∧
Q <Q.
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2 Lattices and closure systems
Definition 3 (Bounded lattice). A lattice is a partially ordered set (L,≤) such that:

(a) the infimum a∧b of the set {a,b} exists for any a,b ∈ L;

(b) the supremum a∨b of the set {a,b} exists for any a,b ∈ L;

(c) the maximum > of L exists;

(d) the minimum ⊥ of L exists.

Such a lattice is complete if

(a’)
∧

X ∈ L exists for every X ⊆ L;

(b’)
∨

X ∈ L exists for every X ⊆ L.

A partial order for which (a) and (c) hold is a meet-semilattice; a partial order for
which (b) and (d) hold is a join-semilattice. A partial order for which (a’) hold is
a complete meet-semilattice; a partial order for which (b’) holds is a complete join-
semilattice.

Exercise 3. For any partial order (P,≤),

1. Prove that if X ⊆ Y ⊆ P then
∨

X ≤
∨

Y and
∧

Y ≤
∧

X whenever they exist;

2. Deduce that if > exists then >=
∧
∅ and if ⊥ exists then ⊥=

∨
∅.

Exercise 4. Prove that if (L,≤) is a complete meet-semilattice, then (L,≤) is a com-
plete lattice. Hint: Let X ⊆ L; to show that

∨
X exists, consider Xu (cf. Definition

??).

Definition 4 (Closure system). If (L,≤) is a complete lattice, a closure system of (L,≤)
is a subset C ⊆ L such that, for every X ⊆ L, if X ⊆ C then

∧
X ∈ C .

Exercise 5. Let (L,≤) be a complete lattice. Prove that > ∈ C for any closure system
of (L,≤).

Exercise 6. For any topological space (X ,τ), show that the set Cτ := {Ac | A ∈ τ} is
a closure system, where Ac is the relative complement of A with respect to X.

Exercise 7. For any logical system S , let the map c` : P(Fm)→P(Fm) be defined
by the assignment Γ 7→ {ϕ | Γ ` ϕ}. Show that Cc` = {Γ⊆ Fm | ∀ϕ(Γ ` ϕ⇒ ϕ ∈ Γ)}
is a closure system. Which set of formulas is ⊥Cc`

?

Exercise 8. Let (L,≤) be a complete lattice. Prove that, if C ⊆ L is a closure system
of (L,≤), then for every Y ⊆ C ,

∨
C Y = cC (

∨
Y ), where the map cC : L→ L is defined

by the assignment a 7→
∧
{x ∈ C | a≤ x}. (Notice that:

∨
C Y is the supremum of Y in

C (cf. Exercise 5) and
∨

Y is the supremum of Y in L.)
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3 Birkhoff’s representation theorem for complete lat-
tices

Definition 5 (Homomorphism). Let L and K be bounded lattices. A map f : L→ K is
said to be a homomorphism (or bounded lattice homomorphism) if

(a) for all a,b ∈ L, f (a∧L b) = f (a)∧K f (b);

(b) for all a,b ∈ L, f (a∨L b) = f (a)∨K f (b);

(c) f (>L) =>K;

(d) f (⊥L) =⊥K .

If L and K are complete lattices, f : L→ K is said to be a complete homomorphism if

(a’) for any set X ⊆ L, f (
∧

L X) =
∧

K{ f (a) | a ∈ L};

(b’) for any set X ⊆ L, f (
∨

L X) =
∨

K{ f (a) | a ∈ L}.
f is said to be an isomorphism (or lattice isomorphism) if f is bijection.

Exercise 9. Let L and K be bounded lattices. Show that f : L→ K is an isomorphism
iff it is surjective and is an order-embedding. 1

Definition 6. For every formal context P = (A,X , I), a formal concept of P is a pair
c = (B,Y ) such that B ⊆ A, Y ⊆ X, and B↑ = Y and Y ↓ = B (cf. see Definition Exer-
cise/Example 4 in Lecture 2). The set B is the extension of c, which we will sometimes
denote [[c]], and Y is the intension of c, sometimes denoted ([c]). Let L(P) denote the set
of the formal concepts of P. Then the concept lattice of P is the complete lattice

P+ := (L(P),
∧
,
∨
),

where for every X ⊆ L(P),∧
X := (

⋂
c∈X

[[c]],(
⋂

c∈X
[[c]])↑) and

∨
X := ((

⋂
c∈X

([c]))↓,
⋂

c∈X
([c])).

and the partial order underlying this lattice structure is defined as follows: for any
c,d ∈ L(P),

c≤ d iff [[c]]⊆ [[d]] iff ([d])⊆ ([c]).

Exercise 10. Prove that >P+ :=
∧
∅= (A,A↑) and ⊥P+ :=

∨
∅= (X↓,X).

Exercise 11. Compute the concept lattices associated with the polarities P= (A,X , I),
such that A = {a,b,c}, X = {x,y,z} and I ⊆ A×X in the following cases:

(1) I = {(a,x),(b,y),(c,z)};

(2) I = {(a,x),(b,x),(b,y),(c,y),(c,z)};

(3) I = {(a,x),(a,y),(b,x),(b,z),(c,y),(c,z)}.
Exercise 12 (Birkhoff’s representation theorem). Complete the proof of Birkhoff’s the-
orem in Lecture 2.

1Let (P,≤) and (Q,≤) be partially ordered sets. A map f : P→ Q is an order-embedding if, for all
x,y ∈ P, x≤ y in P if and only if f (x)≤ f (y) in Q.
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