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Abstract

In the first part this lecture, we discuss the extant foundational views on cate-
gorization theory, and their pros and cons. In the second part, we give an informal
outline of the extant mathematical models for categorization and to which extent
they reflect insights from the foundational views. In the third part, we argue that
there is a mathematical approach that unifies these various models, and – time
permitting –we start giving some details about this approach.

1 Introduction
Categories. Categories are cognitive tools that humans use to organize their expe-
rience, understand and function in the world, and understand and interact with each
other, by grouping things together which can be meaningfully compared and evalu-
ated. Categorization is the basic operation humans perform e.g. when they relate ex-
periences/actions/objects in the present to ones in the past, thereby recognizing them
as instances of the same type. This is what we do when we try and understand what
an object is or does, or what a situation means, and when we make judgments or deci-
sions based on experience. Categorization is the single cognitive mechanism underly-
ing meaning-attribution, value-attribution and decision-making. In this course, we will
introduce the basic facts and properties (cf. [CFPPTW16, CFPPTW17]) of logical sys-
tems describing and reasoning about categories and categorization, thereby laying the
ground of a mathematical-logical environment in which these three cognitive processes
can be formally analyzed in their relationships to one another.

Relevance. Nowadays, categories are key to the theories and methodologies of a
wide range of fields in the social sciences and AI: in cognitive anthropology, cultures
are analysed and compared in terms of their categorization behaviour [d’A95]; in lin-
guistics, categories are central to the mechanisms of grammar generation [Cr91]; in
cognitive science, categorical perception [Ha87, Be03] has been identified as the most
basic cognitive activity, and used to analyze higher-order cognitive activities; in AI,
classification techniques are core to pattern recognition, data mining, text mining, and
knowledge discovery in databases; in psychology, the dynamics of category-acquisition
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serve to illuminate the relationship between language and thought [VHV12]; in soci-
ology, categories are used to explain the construction of social identity [Je00, Je14]
and the organization of experience (cf. frame analysis [Go74]); in management sci-
ence, categories are used to predict how products and producers will be perceived and
evaluated by consumers and investors [Wi11, CPT17, PD16, WLJ14, DK17]. There-
fore, developing the basis for a logical theory of categorization will also create a lingua
franca which will make it possible to establish novel connections and transfer results
and insights between these fields.

2 Extant foundational approaches
The literature on the foundations of categorization theory (cf. [CL05]) displays a vari-
ety of definitions, theories, models, and methods, each with its pros and cons. Below
we briefly review the most influential approaches.

The classical theory. The classical theory of categorization [SM81] goes back to
Aristotle, and is based on the insight that all members of a category share some funda-
mental features which define their membership. Accordingly, categorization is viewed
as a deductive process of reasoning with necessary and sufficient conditions, resulting
in categories with sharp boundaries, which are represented equally well by any of their
members. The classical view has inspired influential approaches in machine learning
such as conceptual clustering [Mi80,Fi87]. However, this view runs into difficulties
when trying to accommodate a new object or entity which would intuitively be part
of a given category but does not share all the defining features of the category. Other
difficulties are:
(a) providing an exhaustive list of defining features (Wittgenstein: what is a game?);
(b) how to deal with unclear cases (is it blue or is it green?);
(c) the existence of members of given categories which are judged to be better repre-
sentatives of the whole class than others (if I ask you to think of a bird, would you think
of a sparrow or would you think of a penguin?).
All these issues motivated the introduction of the second view.

The prototype view. This view was developed by Rosch and Lakoff [La99,Ro05].
According to it, categorization is not a deductive process, but is rather an inductive
process by which we try and find the best match between the features of an object
and those of the closest prototype(s). In this way, membership in a category does not
need anymore to be decided through the satisfaction of an exhaustive list of features;
this approach allows for unclear cases (the closer an object is to the prototype, the
easier it is to decide whether it is a member, and borderline cases are also possible),
and embracing the empirically verified intuition that people regard membership in most
categories as a matter of degrees, and certain members as more central (or prototypical)
to a category than others. However, how do we generate prototypes in our minds?
Prototype theory does not have an answer to this issue.
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The exemplar view. To address this issue, the exemplar theory [SM02] was pro-
posed, according to which individuals make category judgments by comparing new
stimuli with instances already stored in memory (the “exemplars”). However, the ex-
istence of instances or prototypes of a given category presupposes that this category
has already been defined, hence both the prototype and the exemplar view run into a
circularity problem. Moreover, it has been argued that similarity-based theories of cat-
egorization such as exemplar theory and prototype theory fail to address the problem
of explaining ‘why we have the categories we have’, or, in other words, why certain
categories seem to be more cogent and coherent than others. Even more fundamen-
tally, similarity might be imposed rather than discovered (do things belong in the same
category because they are similar, or are they similar because they belong in the same
category?), i.e. might be the effect of conceptual coherence rather than its cause.

The theory-based view. Pivoting on the notion of coherence for category-formation,
the theory-based view on categorization [MM85] posits that categories arise in con-
nection with theories (broadly understood so as to include also informal explanations).
For instance, ice, water and steam can be grouped together in the same category on
the basis of the theory of phases in physical chemistry. The coherence of categories
proceeds from the coherence of the theories on which they are based. This view of
categorization allows one to group together entities which would be scored as dissim-
ilar using different methods; for instance, it allows to group together a gold watch, the
school report of one’s grandfather, and the naked ownership of a piece of land in the
category of “things one wants one’s children to inherit”, which is based on one’s theory
of what family is. However, the theory-based view does not account for the intuition
that categories themselves are the building blocks of theory-formation, which again
results in a circularity problem, and does not account for how changes in the theories
account for changes in the categories.

Summing up. Although each of these views provides useful insights on the essence
of categories, none of them satisfactorily solves all the issues and provides an overarch-
ing approach to the foundations of categorization capable to reconcile the coexistence
of seemingly contradictory aspects, such as the sharp vs vague nature of categorical
boundaries, or accounting for categorical coherence and stability in the face of contex-
tual changes.

Our suggested approach. Notwithstanding its problems, the only theory of catego-
rization which deserves to be called ‘theory’ still remains the classical one. So, rather
than try and replace the classical theory with another one, we should endow the clas-
sical theory with improved formal tools so as to be able to account for the aspects of
categories that are not yet covered by the classical theory.
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3 Extant mathematical approaches
In the extant literature, there are four most influential mathematical approaches to the
representation of categories and concepts. Below, we review these approaches while
simultaneously discussing to which extent they can be linked to the extant foundational
approaches above, and to which extent they have been linked to logic.

Formal Concept Analysis (FCA). This is a method of data analysis pioneered by
Wille [GW12] and based on Birkhoff’s representation theory of complete lattices [Bi40].
In FCA, databases are represented as formal contexts, i.e. structures (A,X , I) such that
A and X are sets, and I ⊆ A×X is a binary relation. Intuitively, A is understood as a
collection of objects, X as a collection of features, and for any object a and feature x,
the tuple (a,x) belongs to I exactly when object a has feature x. Every formal con-
text (A,X , I) can be associated with the collection of its formal concepts, i.e. the tuples
(B,Y ) such that B is a subset of A, Y is a subset of X , and B×Y is a rectangle maximally
included in I. The set B is the extension of the formal concept (B,Y ), and Y is its inten-
sion. Because of maximality, the extension of a formal concept uniquely identifies and
is identified by its intension. Formal concepts can be partially ordered; namely, (B,Y )
is a subconcept of (C,Z) exactly when B is a subset of C, or equivalently, when Z is
a subset of Y . Ordered in this way, the concepts of a formal context form a complete
lattice (i.e., the least upper bound and the greatest lower bound of every set of formal
concepts exist), and by Birkhoff’s theorem, every complete lattice is isomorphic to a
concept lattice. FCA provides a very elegant and successful mathematical representa-
tion of key insights into categories and concepts; for instance, while many approaches
identify concepts with their extension, in FCA, intension and extension of a context
are treated on a par, i.e., the intension of a concept is just as essential as its extension.
While FCA has tried to connect itself with various cognitive and philosophical theories
of concept formation, it is most akin to the classical view.

Conceptual spaces. The second mathematical approach to the representation of cat-
egories and concepts was introduced by Gärdenfors and employs conceptual spaces
[Gä04]. These are multi-dimensional geometric structures, the components of which
(the quality dimensions) are intended to represent basic features–e.g. color, pitch, tem-
perature, weight, time, price–by which objects (represented as points in the product
space of these dimensions) can be meaningfully compared. Each dimension is endowed
with its appropriate geometric (e.g. metric, topological) structure. Concept-formation
in conceptual spaces is modelled according to a similarity-based view of concepts.
Specifically, if each dimension of a conceptual space has a metric, these metrics trans-
late in a notion of distance between the objects represented in the space, which models
their similarity, so that the closer their distance, the more similar they are. Concepts
are represented as convex sets of the conceptual space (a subset is convex if it includes
the segments between any two of its points. In the Euclidian plane, squares are convex
while stars are not). The geometric center of any such concept is a natural interpreta-
tion of the prototype of that concept. Conversely, any finite set of points (understood as
the set of prototypes) gives rise to a tiling of the space, in which each point is assigned
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to its closest prototype(s). If the conceptual space is endowed with a Euclidian metrics,
the tiles so generated are convex sets. Although conceptual spaces have been argued
to support both non-monotonic reasoning [Gä04] and fuzzy reasoning [Go05], neither
view has been concretely realized.

Vector space models. The third approach, making use of vector space models (VSMs)
[TP10, Cl15], is technically akin to Gärdenfors’ approach, although it is motivated dif-
ferently. This approach was developed in the field of information retrieval and then
imported to natural language processing and computational linguistics. Given a corpus
of n documents, words are modelled as the n-tuples (vectors) of the frequencies with
which they occur in each document. While VSMs are used in information retrieval
to extract information on what documents are about on the base of word-frequencies,
in linguistics they are used to extract information about the similarity of meaning of
words, based on their co-occurrences in a corpus of documents. The motivating insight
for the use of VSMs in linguistics is the distributional hypothesis [Wi10], which posits
that words occurring in similar contexts are likely to have similar meanings. The natu-
ral notion of distance between vectors allows to quantify the similarity of meaning of
two given words (the closer their distance as vectors, the more similar their meaning).
VSMs are widely considered the most successful approach to lexical semantics, and
recently, this approach has been augmented so as to make it compatible with a com-
positional theory of meaning [CSC10, GS11, GSCP14], which is an important step in
the direction of logic. The applications of VSMs focus mainly on similarity judgments
rather than higher-level concepts, and consequently, VSMs have not been explicitly
related with any theory of concepts, although, mathematically, they have been recently
shown to be a specialization of conceptual spaces [MAPW15], and seminal steps have
been taken [BCLM16] to endow this framework with a reasoning machinery account-
ing for concept-entailment.

Event spaces The fourth approach makes use of event spaces in conceptual clustering
[Mi80]. These structures are cartesian products of a finite number of (typically finite,
discrete or linearly ordered) domains of interpretation of a variable. Objects (events)
are represented as the tuples of the values they score on each variable, and several nat-
ural distance notions can be introduced to capture different kinds of graded similarity
between events. Unlike the other mathematical approaches discussed above, a logical
perspective is explicitly introduced in terms of a quantifier-free predicate logical lan-
guage which is defined for each event space. The atomic formulas of this language,
called selectors, are (essentially) membership statements of the form x ∈ X for some
subset X of the domain of interpretation of the variable x. The original presentation
of conceptual clustering is inspired by the classical view on categorization, and this
is witnessed by the fact that concepts are represented syntactically as conjunctions of
selectors, i.e. in terms of all the properties that members of the category need to sat-
isfy. However, subsequent variations (e.g. [Mi83]) draw insights from the theory-based
view. From a technical viewpoint, associating a logical language with each event space
only serves to provide an a priori specification of a finite list of subsets of the event
space embodying the relevant concepts, which could be otherwise specified in purely
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set-theoretic, non-logical terms, and indeed, this set-theoretic perspective on concepts
is the dominant one pursued in conceptual clustering.

4 Unification via closure operators
The unification that we propose starts with the technical insight that the four mathe-
matical approaches described above can be unified by a single notion – that of closure
operator, cf. [DP95] – which accounts for the concept-formation in each approach. If
(P,≤) is a partially ordered set, a map c : P→ P is a closure operator on (P,≤) if, for
all x,y in P:
(a) x≤ c(x);
(b) if x≤ y then c(x)≤ c(y);
(c) c(c(x)) = c(x).
Given a topological space X , the map associating any subset Y with the smallest closed
set containing Y is a closure operator on the powerset of the domain of X . Given a
logic L, the map associating any set of formulas Γ with the set of formulas which are
logical consequences of Γ is a closure operator on the powerset of the formulas of L.
In a Euclidean space X , the map associating any subset Y with its convex hull (i.e. the
smallest convex set containing Y ) is a closure operator on the powerset of X. Any clo-
sure operator on (P,≤) is completely determined by the set {x ∈ P | x = c(x)} of its
closed elements. The set of closed subsets of any closure operator on the powerset
of a set is a complete lattice, with greatest lower bounds given by intersections, and
least upper bounds given by closures of unions. Conversely, every complete lattice is
isomorphic to the lattice of closed sets of some closure operator on the powerset of
some set (this is an equivalent restatement of Birkhoff’s representation theorem). The
concept lattice associated with a formal context (A,X , I) is isomorphic to the lattice
of closed sets of the closure operator c : P(A)→ P(A) defined by mapping any subset
B of A to its unique superset C such that C is the “side” (the first projection) of some
maximal rectangle C×Z included in I. Equivalently, the same concept lattice is (du-
ally) isomorphic to the lattice of closed sets of the closure operator c : P(X)→ P(X)
defined by mapping any subset Y of X to its unique superset Z such that Z is the “side”
(the second projection) of some maximal rectangle C×Z included in I. The lattice of
concepts of a conceptual space (or vector space) X is the lattice of closed sets of the
closure operator c : P(X)→ P(X) defined by mapping any subset Y of X to its convex
hull. Finally, the semantic concepts of event spaces are generated by taking all inter-
sections of a set of basic concepts. This gives rise to a collection of subsets endowed
by construction with the characterizing property (closure under arbitrary intersection)
of the set of closed sets of a closure operator.

Upshot. The discussion above can be summarized as follows: the four mathematical
approaches to categorization model concept-generation by means of a single underly-
ing mechanism, captured by the (order-theoretic) notion of closure operator. Closure
operators underlie both the generation of logical theories from sets of formulas, and
the generation of categories and concepts from sets of elements. Closure operators and
complete lattices are intimately related via Birkhoff’s representation theorem. This
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relation gives a mathematical backbone to the intuition that categories do not arise in
isolation, but as elements of hierarchies of categories (modelled as complete lattices).

References
[BCLM16] Bankova, D., Coecke, B., Lewis, M., & Marsden, D. (2016). Graded en-
tailment for compositional distributional semantics. arXiv preprint arXiv:1601.04908.

[Be03] Beer, Randall D. ”The dynamics of active categorical perception in an
evolved model agent.” Adaptive Behavior 11.4 (2003): 209-243.

[Bi40] Birkhoff, Garrett. Lattice theory. Vol. 25. American Mathematical Soc.,
1940.

[CPT17] Cattani, Gino, Joseph F. Porac, and Howard Thomas. ”Categories and
competition.” Strategic Management Journal 38.1 (2017): 64-92.

[Cl15] Clark, Stephen. ”Vector space models of lexical meaning. Handbook of
Contemporary Semantics.” (2015).

[CSC10] Coecke, Bob, Mehrnoosh Sadrzadeh, and Stephen Clark. ”Mathemati-
cal foundations for a compositional distributional model of meaning.” arXiv preprint
arXiv:1003.4394 (2010).

[CL05] Cohen, Henri, and Claire Lefebvre, eds. Handbook of categorization in
cognitive science. Elsevier, 2005.

[CFPPTW16] Conradie, W., S. Frittella, A. Palmigiano, M. Piazzai, A. Tzimoulis,
N. Wijnberg. ”Categories: How I Learned to Stop Worrying and Love Two Sorts.”
Proc. WoLLIC 2016, LNCS 9803, pp. 145-164, 2016. ArXiv preprint 1604.00777.

[CFPPTW17] Conradie, W., S. Frittella, A. Palmigiano, M. Piazzai, A. Tzimoulis,
N. Wijnberg. ”Toward an Epistemic-Logical Theory of Categorization”. Proc. TARK
2017, J.Lang ed, EPTCS 251, pp. 167-186, 2017.

[Cr91] Croft, William. Syntactic categories and grammatical relations: The cogni-
tive organization of information. University of Chicago Press, 1991.

[d’A95] d’Andrade, Roy G. The development of cognitive anthropology. Cam-
bridge University Press, 1995.

[DP95] Davey, Brian A., and Hilary A. Priestley. Introduction to lattices and order.
Cambridge university press, 2002.

[DK17] Durand, Rodolphe, and Mukti Khaire. ”Where Do Market Categories
Come From and How? Distinguishing Category Creation From Category Emergence.”
Journal of Management 43.1 (2017): 87-110.

[Fi87] Fisher, Douglas H. ”Knowledge acquisition via incremental conceptual clus-
tering.”Machine learning 2.2 (1987): 139-172.
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