Logical foundations of categorization theory Handout 1

Fei Liang and Alessandra Palmigiano

July 26, 2021

1 Preliminaries

Definition 1 (Partial order). *Let P be a set.* A partial order *on P is a binary relation* \leq *on P such that, for all* $x, y, z \in P$,

- (a) $x \leq x$ (reflexive);
- (b) if $x \le y$ and $y \le x$ then x = y (antisymmetric);
- (c) if $x \le y$ and $y \le z$ then $x \le z$ (transitive).

If \leq is a partial order on *P*, we call (P, \leq) a partially ordered set (poset).

Definition 2 (Closure operator). *If* (P, \leq) *is a partially ordered set, a map* $c : P \to P$ *is a* closure operator *on* (P, \leq) *, if for all* $x, y \in P$ *,*

- (a) $x \le c(x)$ (inflationary);
- (b) if $x \le y$ then $c(x) \le c(y)$ (monotone);
- (c) c(c(x)) = c(x) (idempotent).

If c is a closure operator on (P, \leq) , let $\mathscr{C}_c := \{x \in P \mid x = c(x)\}$.

2 Examples and Exercises

Topological Spaces

Definition 3. A topological space is a tuple (X, τ) such that X is a set and τ is a collection of subsets of X, called open sets, such that:

(a) $\emptyset, X \in \tau$;

(b) τ is closed under finite intersection and arbitrary unions.

Exercise 1. Prove that, for every topological space (X, τ) , the map $c : \mathscr{P}(X) \to \mathscr{P}(X)$ defined by the assignment $Y \mapsto \bigcap \{C \in \mathscr{C}_{\tau} \mid Y \subseteq C\}$ is a closure operator on $(\mathscr{P}(X), \subseteq)$, where $\mathscr{C}_{\tau} := \{A^c \mid A \in \tau\}$ and A^c is the relative complement of A with respect to X.

Logical Systems

Definition 4. *The Polish school in logic defines a* logical system *as a tuple* $\mathscr{S} = (\mathbf{Fm}, \vdash)$ *such that* \mathbf{Fm} *is the algebra of* \mathscr{L} *-formulas over a given set* Φ *of propositional variables for a given algebraic signature* \mathscr{L} *, and* \vdash *is a* consequence relation on \mathbf{Fm} , *i.e.* $\vdash \subseteq \mathscr{P}(\mathbf{Fm}) \times \mathbf{Fm}$ *such that for all* $\varphi, \psi \in \mathbf{Fm}$ *and all* $\Delta, \Gamma \subseteq \mathbf{Fm}$:

- (a) if $\varphi \in \Gamma$, then $\Gamma \vdash \varphi$;
- (b) if $\Gamma \vdash \varphi$ and $\Gamma \subseteq \Delta$, then $\Delta \vdash \varphi$;
- *(c) if* $\Gamma \vdash \psi$ *for every* $\psi \in \Delta$ *and* $\Delta \vdash \varphi$ *, then* $\Gamma \vdash \varphi$ *.*

Exercise 2. For any logical system \mathscr{S} as above, prove that the map $c_{\vdash} : \mathscr{P}(\mathbf{Fm}) \to \mathscr{P}(\mathbf{Fm})$ defined by the assignment $\Gamma \mapsto \{\varphi \mid \Gamma \vdash \varphi\}$ is a closure operator on $(\mathscr{P}(\mathbf{Fm}), \subseteq)$.

Galois Connections

Definition 5 (Galois connection). Let (P, \leq) and (Q, \leq) be partial orders. A Galois connection is a pair of maps $\triangleright : P \to Q$ and $\triangleright : Q \to P$ such that, for every $x \in P$ and every $y \in Q$,

$$x \leq \triangleright y \quad iff \quad y \leq \triangleright x.$$

Exercise 3. Prove that, in any Galois connection (cf. Definition ??),

- *1.* $x \leq \triangleright \triangleright x$ and $y \leq \triangleright \triangleright y$;
- 2. $x \leq x'$ implies $\triangleright x' \leq \triangleright x$, and $y \leq y'$ implies $\triangleright y' \leq \triangleright y$;
- 3. $\triangleright \triangleright \triangleright x = \triangleright x \text{ and } \triangleright \triangleright \flat y = \flat y$.

Deduce from the previous items that for every Galois connection as above, $\triangleright \triangleright$ is a closure operator on (P, \leq) and $\triangleright \triangleright$ is a closure operator on (Q, \preceq) .

Polarities

Definition 6. A polarity or formal context is a triple $\mathbb{P} = (A, X, I)$ such that A and X are sets and $I \subseteq A \times X$. Every polarity induces the pair of maps

$$(\cdot)^{\uparrow}: \mathscr{P}(A) \to \mathscr{P}(X) \quad and \quad (\cdot)^{\downarrow}: \mathscr{P}(X) \to \mathscr{P}(A),$$

respectively defined by the assignments

$$B^{\uparrow} := \{ x \in X \mid \forall a (a \in B \Rightarrow aIx) \} \quad and \quad Y^{\downarrow} := \{ a \in A \mid \forall x (x \in Y \Rightarrow aIx) \}.$$

Exercise 4. Show that

1. the map $\uparrow: \mathscr{P}(A) \to \mathscr{P}(X)$ and the map $\downarrow: \mathscr{P}(X) \to \mathscr{P}(A)$ form a Galois connection, that is, for every $B \subseteq A$ and every $Y \subseteq X$,

$$B \subseteq Y^{\downarrow} \quad i\!f\!f \quad Y \subseteq B^{\uparrow}$$

2. deduce that $(\cdot)^{\uparrow\downarrow} : \mathscr{P}(A) \to \mathscr{P}(A)$ and $(\cdot)^{\downarrow\uparrow} : \mathscr{P}(X) \to \mathscr{P}(X)$ are closure operators on $(\mathscr{P}(A), \subseteq)$ and $(\mathscr{P}(X), \subseteq)$ respectively.¹

¹When $B = \{a\}$ (resp. $Y = \{x\}$) we write $a^{\uparrow\downarrow}$ for $\{a\}^{\uparrow\downarrow}$ (resp. $x^{\downarrow\uparrow}$ for $\{x\}^{\downarrow\uparrow}$).